The Eucalyptus Open-source Cloud-computing System
Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff, Dmitrii
Zagorodnov

Jeff Bezanson, MIT (6.897 Spring 2011)

Eucalyptus is an open source cloud-computing system (and now an open source company). This means it
is a piece of data center software that handles the process of provisioning hardware resources in response
to requests from users. Eucalyptus provides infrastructure-as-a-service (IaaS), so you get to upload disk
images and access the hardware at a low level by running a VM.

Requests are made using a web service API; the client requests a URL or POSTs an XML document with
request parameters such as hardware architecture, memory and storage capacity, available connectivity,
and geographic location. The server returns an XML document describing the results (e.g. names of
the machines). The Eucalyptus authors chose to implement Amazons EC2 API, so the two services are
compatible. There are some other cloud APIs, such as vCloud from VMWare. They seem to be fairly
similar in functionality, but of course have different names for everything and different XML schema.

The authors of the paper have a background in grid computing, so they highlight what they see as the
differences between grid and cloud. The cloud is designed to support a large number of users, while grid
computing was meant to run very large jobs for a small number of users. Cloud computing involves selecting
a particular provider and running in their datacenter(s), while grid computing involved a federation of
multiple organizations (e.g. universities). It is interesting to consider what we gain and lose in each of
these models.

Eucalyptus must handle five basic tasks to do its job: (1) scheduling VM instances, (2) storing disk
images and user data, (3) constructing virtual networks, (4) defining and executing service-level agreements
(SLAs), and (5) providing user and administrative interfaces. These jobs are split among four components,
each its own web service:

e Node Controller: executes VMs and monitors resources on one node. Supports runlnstance and
terminatelnstance calls.

e Cluster Controller: manages groups of nodes, sets up virtual network. Supports runlnstances, de-
scribelnstances, etc. Collects resource information from node controllers and tells them to run VMs
as appropriate, reports back to the cloud controller about how many instances it was able to schedule.

e Storage Controller: key-value store, S3 semantics, lock-free
e Cloud Controller: user and administrator Uls, API and web interface

Administrators can choose whether to treat Eucalyptus-managed VMs like other machines on their network,
or to let Eucalyptus set up an isolated virtual network for each set of VMs. Users can declare networks
and attach VMs to them. All VMs get private IP addresses, and users can request public IPs for VMs
as needed. NAT is used to get to other nodes. The Cloud Controller acts as a router between virtual
networks, using iptables to implement user-requested traffic restrictions.

The Cloud Controller tracks the systems resource state to estimate whether user SLAs can be satisfied. On
certain events, such as timer expirations, requests are evaluated. The platform might then reject requests
or make changes to accommodate them. SLAs can also express requests like using a particular cluster, or
using the emptiest cluster. The paper doesnt have a lot of detail on this.

Questions to ponder: Is there a cloud API war? Now that EC2 has multiple implementations, are we
likely to see it emerge as a de-facto standard? Is scheduling at the granularity of VMs the final answer on
resource sharing?



