
Dynamo: Amazon’s Highly Available Key-value Store
G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels

Alexandre Milouchev, MIT (6.897 Spring 2011)

1 Introduction

At a massive scale, there is no question whether failure will occur or not – it surely will, and it will
do so often. To Amazon.com, with its fleet of services, reliability is one of the key concerns that
need to be addressed in order to provide an ”always-on” experience to its clients. To that end,
Amazon’s core services use Dynamo, which is a highly-available, eventually consistent, key-value
distributed storage system.

2 Design

In order to achieve the high level of availability it provides, Dynamo by design sacrifices consistency
to some extent. It uses the principle of eventual consistency, which is a specific form of weak
consistency. The latter provides no guarantee that after a write is performed, a read will return the
updated value. With eventual consistency, it is certain that at some point after a write, provided
no other writes occur, all readers will see the same updated value. Inconsistency must be tolerated
by a very-large-scale reliable distributed system, in order to (1) improve the speed at which large
volumes of reads and writes are performed, and (2) to ensure availability in network partition cases
where requiring majority (and therefore enforcing strong consistency) would render part of the
system temporarily unavailable.

In Dynamo’s case, the design decision to use eventual consistency came from the conclusion that
many of Amazon’s services can handle temporary inconsistency, in exchange of increased perfor-
mance and, most importantly, availability. The paper also states that the majority of these services
don.t need a full-fledged RDBMS to operate, which would incur significant increases in maintenance
costs and reduced performance, and that a key-value type of storage would be sufficient. It is impor-
tant to note that the design of Dynamo was facilitated by the assumption that it will only be used
by Amazon internal services, so the requirements of the clients were known in advance; moreover,
no security concerns were raised during the design phase. The other main design question raised
by the paper is on conflict resolution. Conflicts are guaranteed to occur with optimistic replication
techniques. Since strong consistency is not enforced, the system will often hold multiple replicas of
the same data that are ”out of sync”. When an update is first executed, it needs to be propagated
to the other nodes that store replicas of the same data. Conflict resolution can be handled either
by the server or by the client, and either at read or at write time. Typically, distributed systems
handle conflict resolution at write time, so that read complexity is reduced. However, that can
lead to cases where a write is rejected and needs to be repeated. In the case of Dynamo, that
is not an acceptable scenario, as many of the services that run on top of it need to be able to
perform updates on the data no matter what (e.g.: amazon.com shopping cart update cannot be
lost). That is why conflict resolution is migrated to the read operations, thus allowing Dynamo to
be an ”always writeable” data store.

1

Dynamo: Amazon’s Highly Available Key-value Store
G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels

Alexandre Milouchev, MIT (6.897 Spring 2011)

3 System architecture

The paper mentions that besides dealing with availability and data persistence, such a massively
distributed system needs to have scalable solutions for a number of other concerns/subcomponents.
Six of those are specifically addressed in the system architecture section.

1. Partitioning

The network will necessarily be partitioned for a system of this scope. To deal with that partitioning,
Dynamo uses consistent hashing. When a new node is added to the system, it gets assigned a
number of virtual nodes on a hashing ”ring”. Each virtual node deals with a range of values from
the output space of the hash function in use. This is different from the general DHT idea, where
each node has a single position on the ring. The advantages of using virtual nodes are threefold:
the burden of sending replicas to a newly-added node is shared by multiple nodes; the load handled
by a node that fails is spread across multiple of the remaining live nodes; finally, a new node can
be assigned a variable number of virtual nodes, depending on its capacity, thus taking into account
different physical nodes. discrepancies in performance.

2. Replication

To ensure both durability and availability, data is replicated not only on the ring node within
whose hash range its hash falls, but also on the N subsequent clockwise nodes. The list of nodes
responsible for a given key is called its ”preference list”. A preference list is longer than N nodes
to account for failures. Finally, a key’s preference list is guaranteed to contain different physical
hosts by purposefully skipping virtual nodes which are hosted on a physical host that has already
been used, at construction time.

3. Data Versioning

Due to eventual consistency, a write operation might not take effect immediately on all nodes that
hold copies of the data. Thus there will be out-of-sync versions of the data in the system. In
order to detect causality between them, Dynamo uses vector clocks. In this way, if during a read it
realizes that there are multiple versions of the same data in the system, it can check for causality
and return the later version if there is a causal relation. If there isn’t, however, Dynamo cannot
infer anything and will simply return all of the different existing replicas. Conflict resolution occurs
if the client then proceeds to make an update to the data – it is assumed that the client has then
reviewed the received information and reconciled it into one.

4. Put(key, context, object) and Get(key), eventual consistency

Dynamo uses a quorum-like approach to reads and writes. One node acts as the coordinator for the
operation. There are two predetermined values, R and W, which are used to gather the necessary
number of nodes for a read or for a write, respectively. The coordinator starts by contacting the
top N reachable nodes from a key’s preference list. In case of a read, if R nodes respond with the
data, it checks for causally unrelated versions and returns all of them. For a write, the coordinator
waits to hear back from at least W-1 nodes before considering the operation a success.

2

Dynamo: Amazon’s Highly Available Key-value Store
G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels

Alexandre Milouchev, MIT (6.897 Spring 2011)

5. Permanent failure: Replica synchronization

In order not to lose unique replicas due to permanent failure of a node, Dynamo uses Merkle trees
to enforce replica synchronization. Each node holds a Merkle tree for each range it handles. In
that way, two nodes dealing with the same range can very quickly compare the top of their Merkle
tree, then decide whether they need to synchronize or not.

6. Membership

Since nodes can fail at any time then quickly recover, there needs to be a mechanism for signaling
when a node is added to the system for the first time, or when it is about to be removed permanently
intentionally. In such a case, the node itself makes writes to permanent store about its membership
change, and then lets that change propagate through the ring using a gossip protocol. That protocol
has the dual purpose of also propagating virtual node placement information. In that way, every
node knows about the other nodes. ranges and can forward put or get requests in constant time.

4 Implementation and production optimizations

In its implementation, Dynamo has three components present in each node, all of which are im-
plemented in Java: request coordination, membership, and failure detection. A node also has a
persistence engine which can be setup to use one of a number of different storage engines. The
two most popular ones are MySQL and Berkeley Database Transactional Data Store, with the first
being the default options for bigger objects, and the latter being used when handling small objects
(10-100KB).

In production, the point where Dynamo really shines is its adaptability to various use cases. For
conflict resolution, for example, Dynamo lets the client choose if reconciliation will be handled by
the client or the server. Many business applications choose to handle reconciliation themselves,
but a few perform well with simple timestamp reconciliation on the server side, where if there
are multiple versions of the same object at read time, the one with the most recent timestamp is
returned. The other feature that makes Dynamo very versatile is the fact that it exposes N, W,
and R to the client. In that way, one can optimize the storage for reads (W=N, R=1), or for quick
writes (R=N, W=1). The most typical configuration used in production is (N, R, W) = (3, 2, 2).

5 Conclusion

The last part of the paper demonstrates, with production data, how Dynamo has been successful
so far in providing the type of highly-available storage that Amazon’s services require. It comes to
show that an eventually-consistent system, built using a variety of decentralized algorithms, can
successfully handle the real-life requirements of services used in what is currently one of the most
challenging application environments.

3

