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Natural selection works by local gradient ascent



Figure 2.4: The change in gene frequency (∆p) plotted against the gene frequency in a
case of overdominance where fitnesses of AA : Aa : aa are 0.85 : 1 : 0.7.

not trouble us, since the multiplier (1 + a) is only relevant in a region small enough to allow us
to approximate the ∆p curve as a straight line. Farther from the equilibrium the higher-order
derivatives of ∆p become relevant, inevitably in such a way as to keep the gene frequency between
0 and 1.

Our criterion for local stability is this:

−2 <
[
d(∆p)

dp

]
p = pe

< 0, (II-103)

the brackets indicating evaluation at p = pe. There are two sorts of qualification of this picture
necessary. We have not investigated what will happen when a is exactly equal to 0, -1, or -2. In
each case the exact behavior depends on the higher-order terms in ∆p. The results do not modify
(II-103) in any essential way. The second qualification is a more serious one. When generations
are continuous instead of discrete, oscillation is no longer a possibility. In that case the stability
is simply determined by the sign of dp/dt (the quantity analogous to ∆p). If it is positive below
the equilibrium and negative above it, the equilibrium is stable, and not otherwise. Overshooting
is impossible because the gene frequency would have to pass smoothly through pe in order to
overshoot, and once it reached pe it would not change further. There is an analogous damping of
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Stability Considerations

equilibrium within that region resulted in the gene frequency returning to the equilibrium. Thus if
the gene frequency will return to its equilibrium when changed by less than (say) 1%, we describe
the equilibrium as locally stable. If a perturbation of (say) 20% would result in no return to the
equilibrium, then this equilibrium is not globally stable. If an equilibrium is not locally stable, we
say that it is unstable.

To investigate local stability, it is sufficient to consider what happens when the gene frequency
is moved an infinitesimal amount. If it always returns, it is necessarily locally stable, if not it
is unstable. At the equilibrium point, ∆p = 0. Figure 2.4 shows a plot of ∆p aginst p for an
overdominant case in which fitnesses are 0.7 : 1 : 0.85. There are three equilibrium points, at
p = 0, p = 1, and p = 0.333. It seems that p = 0 and p = 1 must be unstable equilibria. When p
is perturbed just above p = 0, ∆p is positive in that region. Thus p will continue to increase away
from the equilibrium. By much the same reasoning p = 1 also seems unstable. Any change of gene
frequency which makes p a bit less than 1 puts it in a region where p continues to decrease away
from 1. The equilibrium at p = 0.333 looks locally stable, but a casual glance is not enough to
determine its stability.

If we assume (as is true in our example) that f(p), and hence also ∆p, are continuous functions
of p, we can make a simple algebraic analysis of local stability. In the vicinity of an equilibrium let
us assume that the ∆p curve can be approximated by a straight line. If x is the distance between
p and pe, so that p = pe + x, then we will approximate ∆p by ax. The quantity a will be the slope
of the ∆p curve as it passes through p = pe. In the next generation, the deviation x′ from the
equilibrium will be

x′ = p + ∆p − pe = pe + x + ∆p − pe

= x + ∆p " x + ax = x(1 + a)
(II-102)

When we are close to the equilibrium, the value of x is thus multiplied by 1 + a each generation.
After t generations, it will be (1 + a)t times its current value.

When a is positive (1 + a)t is a positive number greater than 1, and it will grow with t. This
is the situation near the equilibria p = 0 and p = 1, where the slope a of the ∆p curve is positive.
Any movement of p from p = 0 to a very small positive quantity will create a positive deviation x
which then grows until p leaves the immediate vicinity of p = 0. Near p = 1, if p is set just below
1, this is a negative value of x which also becomes steadily more negative until p departs from the
region near 1. Thus the algebra confirms our suspicions about the stability of p = 0 and p = 1.

When −1 < a < 0, 1 + a lies between 0 and 1. Raising 1 + a to the t-th power makes
it approach zero without ever becoming negative. This is the case in which p approaches the
equilibrium smoothly without ever overshooting. Whatever the initial sign of the deviation x, it
remains of the same sign but goes to zero. When −2 < a < −1, 1 + a lies between -1 and 0.
Multiplying x by 1 + a will change its sign but reduce its magnitude. That corresponds to the
case where there is overshooting of the equilibrium, but the overshoot leaves the gene frequency
each time closer to the equilibrium than it was. The gene frequency oscillates, but with decreasing
amplitude, and ultimately converges to the equilibrium.

Finally, when a < −2, 1+a < −1 so that the deviation x changes sign each generation and grows
in amplitude. The overshoot is so great as to leave the population farther from the equilibrium
each time. It oscillates away from the equilibrium. Extrapolation of this behavior would lead to
an absurdity: the gene frequency would ultimately be greater than 1 or less than 0. This need
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Stability Analysis

Figure 2.4: The change in gene frequency (∆p) plotted against the gene frequency in a
case of overdominance where fitnesses of AA : Aa : aa are 0.85 : 1 : 0.7.
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to approximate the ∆p curve as a straight line. Farther from the equilibrium the higher-order
derivatives of ∆p become relevant, inevitably in such a way as to keep the gene frequency between
0 and 1.
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< 0, (II-103)

the brackets indicating evaluation at p = pe. There are two sorts of qualification of this picture
necessary. We have not investigated what will happen when a is exactly equal to 0, -1, or -2. In
each case the exact behavior depends on the higher-order terms in ∆p. The results do not modify
(II-103) in any essential way. The second qualification is a more serious one. When generations
are continuous instead of discrete, oscillation is no longer a possibility. In that case the stability
is simply determined by the sign of dp/dt (the quantity analogous to ∆p). If it is positive below
the equilibrium and negative above it, the equilibrium is stable, and not otherwise. Overshooting
is impossible because the gene frequency would have to pass smoothly through pe in order to
overshoot, and once it reached pe it would not change further. There is an analogous damping of
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equilibrium within that region resulted in the gene frequency returning to the equilibrium. Thus if
the gene frequency will return to its equilibrium when changed by less than (say) 1%, we describe
the equilibrium as locally stable. If a perturbation of (say) 20% would result in no return to the
equilibrium, then this equilibrium is not globally stable. If an equilibrium is not locally stable, we
say that it is unstable.

To investigate local stability, it is sufficient to consider what happens when the gene frequency
is moved an infinitesimal amount. If it always returns, it is necessarily locally stable, if not it
is unstable. At the equilibrium point, ∆p = 0. Figure 2.4 shows a plot of ∆p aginst p for an
overdominant case in which fitnesses are 0.7 : 1 : 0.85. There are three equilibrium points, at
p = 0, p = 1, and p = 0.333. It seems that p = 0 and p = 1 must be unstable equilibria. When p
is perturbed just above p = 0, ∆p is positive in that region. Thus p will continue to increase away
from the equilibrium. By much the same reasoning p = 1 also seems unstable. Any change of gene
frequency which makes p a bit less than 1 puts it in a region where p continues to decrease away
from 1. The equilibrium at p = 0.333 looks locally stable, but a casual glance is not enough to
determine its stability.

If we assume (as is true in our example) that f(p), and hence also ∆p, are continuous functions
of p, we can make a simple algebraic analysis of local stability. In the vicinity of an equilibrium let
us assume that the ∆p curve can be approximated by a straight line. If x is the distance between
p and pe, so that p = pe + x, then we will approximate ∆p by ax. The quantity a will be the slope
of the ∆p curve as it passes through p = pe. In the next generation, the deviation x′ from the
equilibrium will be

x′ = p + ∆p − pe = pe + x + ∆p − pe

= x + ∆p " x + ax = x(1 + a)
(II-102)

When we are close to the equilibrium, the value of x is thus multiplied by 1 + a each generation.
After t generations, it will be (1 + a)t times its current value.

When a is positive (1 + a)t is a positive number greater than 1, and it will grow with t. This
is the situation near the equilibria p = 0 and p = 1, where the slope a of the ∆p curve is positive.
Any movement of p from p = 0 to a very small positive quantity will create a positive deviation x
which then grows until p leaves the immediate vicinity of p = 0. Near p = 1, if p is set just below
1, this is a negative value of x which also becomes steadily more negative until p departs from the
region near 1. Thus the algebra confirms our suspicions about the stability of p = 0 and p = 1.

When −1 < a < 0, 1 + a lies between 0 and 1. Raising 1 + a to the t-th power makes
it approach zero without ever becoming negative. This is the case in which p approaches the
equilibrium smoothly without ever overshooting. Whatever the initial sign of the deviation x, it
remains of the same sign but goes to zero. When −2 < a < −1, 1 + a lies between -1 and 0.
Multiplying x by 1 + a will change its sign but reduce its magnitude. That corresponds to the
case where there is overshooting of the equilibrium, but the overshoot leaves the gene frequency
each time closer to the equilibrium than it was. The gene frequency oscillates, but with decreasing
amplitude, and ultimately converges to the equilibrium.

Finally, when a < −2, 1+a < −1 so that the deviation x changes sign each generation and grows
in amplitude. The overshoot is so great as to leave the population farther from the equilibrium
each time. It oscillates away from the equilibrium. Extrapolation of this behavior would lead to
an absurdity: the gene frequency would ultimately be greater than 1 or less than 0. This need

61
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Stability Considerations

Cases:
(1) a > 0, (1 + a)t > 1, so x′ = x(1 + a)t unbounded growth
(2) −1 < a < 0, 1 + a lies between 0 and 1, so (1 + a)t → 0
(3) −2 < a < −1, 1 + a lies between −1 and 0.
then multiplying x by 1+a changes its sign, reduces its magnitude, so overshoot,
but converges
(4) a < −2, 1 + a < −1, then deviation changes sign and grows
Summary conditions for local stability:

−2 < [
d(#p)

dp
]p=pe

< 0



ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT
ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT

MVHLTPEEKSAVT (E is the single letter abbreviation for 
                                                glutamic acid)
MVHLTPVEKSAVT (V is the single letter abbreviation 
                                            for valine)

Glutamic acid is a hydrophilic amino acid. Valine is a 
hydrophobic amino acid.

Human variation at genetic code level (genotype) to 
variation in protein to variation in...



AA SS CC AS AC SC

Observed 25374 67 108 5482 1737 130

Expected 25616 307 75 4967 1769 165

Obs/Exp 0.99 0.22 1.45 1.10 0.98 0.79

Relative 
fitness 0.89 0.20 1.31 1 0.89 0.70

Analysis of Hb-a, HB-s, and HB-c data
(from Cavalli-Sforza, 1977)



Suppose just A, S alleles

Suppose just a few C 
alleles introduced

p̂S =
w22 − w12

(w11 − w12 ) + (w22 − w12 )
=

0.2 − 1.0
0.89 − 2.0 + 0.2

= 0.1209

wC = pAwAC + pSwSC + pCwCC ,  when pc ≈ 0,
wC = pAwAC + pSwSC = 0.8670

pA=0.8791
w = 0.90

C cannot invade when rare, even 
though this yields global fitness!
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Figure 2.9: Contours of fitness plotted against allele frequencies in a three-hemoglobin
polymorphism. At any point, the frequency of each allele is proportional to the attitude
to the side opposite the corner labeled with that allele’s symbol. Minima (-), Maxima
(+) and saddle-points (*) of the fitness surface are indicated.

where all three alleles are present. There is an equilibrium there, as the appropriate linear equations
show, but it is not stable. In fact, if there is a stable equilibrium with one fewer allele (including
stability to introduction of the missing allele), the interior equilibrium must be unstable. This fact
follows from the identification of peaks of w̄ with stable equilibria, and from the quadratic nature
of w̄, though it will not be proven here. Since there is a stable equilibrium with only alleles A and
S, there cannot be a stable equilibrium with all three alleles.

Note that the simple plotting of w̄ over the triangle, as done in Figure 2.9, immediately shows the
locations of the two peaks, and shows that there is an interior equilibrium which is unstable, as it is
a saddle of the fitness surface. Such a plot of w̄ will always convey the full picture in multiple-allele
cases, and is by far the easiest and most accessible way of analyzing these situations. Of course,
the plot must be done to sufficient accuracy: both the saddle point and the A-S polymorphic
equilibrium would have been missed if only the contours 0.1 apart (the coarsely dashed curves)
were plotted.

The small size of the peak for the A-S polymorphism would seem to indicate that West African
populations are proceeding to fixation for allele C. This is not necessarily so, because these popu-
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= frequency of A (normal)
= frequency of S (sickle)

pairwise compare: S–C

0.151 : 0.545 : 1.0 → C fixed?

pairwise compare: C–A

0.685 : 0.679 : 1.0 → underdominance; C fixed?

pairwise compare: S–A

0.685 : 0.763 : 0.151 → overdominance; S − A mix



Does sex make you fitter?



Why Sex Hurts

Mixing due to diploid mating actualy reduces fitness!
In other words: an asexually reproducing (haploid)
population could actually do better!
Let’s see how much – this is called segregational load
Puzzle: why does sex survive?A numerical example will be useful here. Suppose that we have a diploid population with

fitnesses
AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
when the genotype frequencies are in their Hardy-Weinberg proportions 0.04 : 0.32 : 0.64, the mean
fitness will be

0.04 × 0.4 + 0.32 × 1 + 0.8 × 0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential viability) will
alter the genotype frequencies to

0.04 × 0.4/0.848 : 0.32 × 1/0.848 : 0.8 × 0.64/0.848

or
0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an excess of het-
erozygotes as a result of their high viability. If the genetic system were asexual, these would be
the genotype frequencies at the start of the next generation. The mean fitness would then be
0.0188×0.4+0.3774×1+0.6038×0.8 = 0.862, an increase of 0.02 over the value before selection.
However meiosis intervenes and makes the next generation start in Hardy-Weinberg proportions at
the new gene frequency of 0.0189 + 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431×0.4+0.3290×1+0.6279×0.8 =
0.84856. This is considerably lower than 0.868 but still above the initial mean fitness of 0.848. The
increase of mean fitness by 0.02 due to natural selection has been rolled back by meiosis to a net
increase of 0.00056. The disruptive effect of meiosis on genotypic combinations is apparent.

If the population lacked meiosis, how much higher could its fitness be? This question was first
posed by Morton, Crow, and Muller (1956), who defined and calculated the segregational load. This
they defined as the fractional reduction in the fitness of a population as a result of the existence
of Mendelian segregation. In the presence of overdominance, an asexual population could come to
consist entirely of heterozygotes. In our parameterization, it would then have a mean fitness of
1. An outcrossing population would come to equilibrium at a gene frequency of pe = t/(s + t) for
allele A, which would result in a mean fitness of

w̄ = 1 − sp2
e − t(1 − pe)2

= 1 − st2/(s + t)2 − ts2/(s + t)2

= 1 − st(s + t)/(s + t)2

= 1 − st/(s + t) (II-116)

The fraction by which fitness is reduced by the presence of segregation, relative to the fitness of
Aa, is st/(s + t). This is half the harmonic mean of s and t.

The segregational load calculation is often misinterpreted as meaning that a population segre-
gating at an overdominant locus somehow suffers a loss in fitness. Keep in mind that we have been
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p(A) = 0.2;
p(AA) = 0.04; p(aa) = 0.64; p(Aa) = 2p(1 − p) = 0.32
H − W ratios :0.04 : 0.32 : 0.04

What is mean fitness?



A numerical example will be useful here. Suppose that we have a diploid population with
fitnesses

AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
when the genotype frequencies are in their Hardy-Weinberg proportions 0.04 : 0.32 : 0.64, the mean
fitness will be

0.04 × 0.4 + 0.32 × 1 + 0.8 × 0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential viability) will
alter the genotype frequencies to

0.04 × 0.4/0.848 : 0.32 × 1/0.848 : 0.8 × 0.64/0.848

or
0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an excess of het-
erozygotes as a result of their high viability. If the genetic system were asexual, these would be
the genotype frequencies at the start of the next generation. The mean fitness would then be
0.0188×0.4+0.3774×1+0.6038×0.8 = 0.862, an increase of 0.02 over the value before selection.
However meiosis intervenes and makes the next generation start in Hardy-Weinberg proportions at
the new gene frequency of 0.0189 + 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431×0.4+0.3290×1+0.6279×0.8 =
0.84856. This is considerably lower than 0.868 but still above the initial mean fitness of 0.848. The
increase of mean fitness by 0.02 due to natural selection has been rolled back by meiosis to a net
increase of 0.00056. The disruptive effect of meiosis on genotypic combinations is apparent.

If the population lacked meiosis, how much higher could its fitness be? This question was first
posed by Morton, Crow, and Muller (1956), who defined and calculated the segregational load. This
they defined as the fractional reduction in the fitness of a population as a result of the existence
of Mendelian segregation. In the presence of overdominance, an asexual population could come to
consist entirely of heterozygotes. In our parameterization, it would then have a mean fitness of
1. An outcrossing population would come to equilibrium at a gene frequency of pe = t/(s + t) for
allele A, which would result in a mean fitness of

w̄ = 1 − sp2
e − t(1 − pe)2

= 1 − st2/(s + t)2 − ts2/(s + t)2

= 1 − st(s + t)/(s + t)2

= 1 − st/(s + t) (II-116)

The fraction by which fitness is reduced by the presence of segregation, relative to the fitness of
Aa, is st/(s + t). This is half the harmonic mean of s and t.

The segregational load calculation is often misinterpreted as meaning that a population segre-
gating at an overdominant locus somehow suffers a loss in fitness. Keep in mind that we have been
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A numerical example will be useful here. Suppose that we have a diploid population with
fitnesses

AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
when the genotype frequencies are in their Hardy-Weinberg proportions 0.04 : 0.32 : 0.64, the mean
fitness will be

0.04 × 0.4 + 0.32 × 1 + 0.8 × 0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential viability) will
alter the genotype frequencies to

0.04 × 0.4/0.848 : 0.32 × 1/0.848 : 0.8 × 0.64/0.848

or
0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an excess of het-
erozygotes as a result of their high viability. If the genetic system were asexual, these would be
the genotype frequencies at the start of the next generation. The mean fitness would then be
0.0188×0.4+0.3774×1+0.6038×0.8 = 0.862, an increase of 0.02 over the value before selection.
However meiosis intervenes and makes the next generation start in Hardy-Weinberg proportions at
the new gene frequency of 0.0189 + 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431×0.4+0.3290×1+0.6279×0.8 =
0.84856. This is considerably lower than 0.868 but still above the initial mean fitness of 0.848. The
increase of mean fitness by 0.02 due to natural selection has been rolled back by meiosis to a net
increase of 0.00056. The disruptive effect of meiosis on genotypic combinations is apparent.

If the population lacked meiosis, how much higher could its fitness be? This question was first
posed by Morton, Crow, and Muller (1956), who defined and calculated the segregational load. This
they defined as the fractional reduction in the fitness of a population as a result of the existence
of Mendelian segregation. In the presence of overdominance, an asexual population could come to
consist entirely of heterozygotes. In our parameterization, it would then have a mean fitness of
1. An outcrossing population would come to equilibrium at a gene frequency of pe = t/(s + t) for
allele A, which would result in a mean fitness of

w̄ = 1 − sp2
e − t(1 − pe)2

= 1 − st2/(s + t)2 − ts2/(s + t)2

= 1 − st(s + t)/(s + t)2

= 1 − st/(s + t) (II-116)

The fraction by which fitness is reduced by the presence of segregation, relative to the fitness of
Aa, is st/(s + t). This is half the harmonic mean of s and t.

The segregational load calculation is often misinterpreted as meaning that a population segre-
gating at an overdominant locus somehow suffers a loss in fitness. Keep in mind that we have been
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After selection (viability, roughly):

A numerical example will be useful here. Suppose that we have a diploid population with
fitnesses

AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
when the genotype frequencies are in their Hardy-Weinberg proportions 0.04 : 0.32 : 0.64, the mean
fitness will be

0.04 × 0.4 + 0.32 × 1 + 0.8 × 0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential viability) will
alter the genotype frequencies to

0.04 × 0.4/0.848 : 0.32 × 1/0.848 : 0.8 × 0.64/0.848

or
0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an excess of het-
erozygotes as a result of their high viability. If the genetic system were asexual, these would be
the genotype frequencies at the start of the next generation. The mean fitness would then be
0.0188×0.4+0.3774×1+0.6038×0.8 = 0.862, an increase of 0.02 over the value before selection.
However meiosis intervenes and makes the next generation start in Hardy-Weinberg proportions at
the new gene frequency of 0.0189 + 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431×0.4+0.3290×1+0.6279×0.8 =
0.84856. This is considerably lower than 0.868 but still above the initial mean fitness of 0.848. The
increase of mean fitness by 0.02 due to natural selection has been rolled back by meiosis to a net
increase of 0.00056. The disruptive effect of meiosis on genotypic combinations is apparent.

If the population lacked meiosis, how much higher could its fitness be? This question was first
posed by Morton, Crow, and Muller (1956), who defined and calculated the segregational load. This
they defined as the fractional reduction in the fitness of a population as a result of the existence
of Mendelian segregation. In the presence of overdominance, an asexual population could come to
consist entirely of heterozygotes. In our parameterization, it would then have a mean fitness of
1. An outcrossing population would come to equilibrium at a gene frequency of pe = t/(s + t) for
allele A, which would result in a mean fitness of

w̄ = 1 − sp2
e − t(1 − pe)2

= 1 − st2/(s + t)2 − ts2/(s + t)2

= 1 − st(s + t)/(s + t)2

= 1 − st/(s + t) (II-116)

The fraction by which fitness is reduced by the presence of segregation, relative to the fitness of
Aa, is st/(s + t). This is half the harmonic mean of s and t.

The segregational load calculation is often misinterpreted as meaning that a population segre-
gating at an overdominant locus somehow suffers a loss in fitness. Keep in mind that we have been
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0.0188 × 0.4 + 0.3774 × 1 + 0.6038 × 0.8 = 0.862 > 0.848
(by 0.02)

Suppose just apply fitness to this in next round
(asexual reproduction), so just multiply
by fitness without meiosis rejuggling:

What is mean fitness without sex?



What is mean fitness with sex?

A numerical example will be useful here. Suppose that we have a diploid population with
fitnesses

AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
when the genotype frequencies are in their Hardy-Weinberg proportions 0.04 : 0.32 : 0.64, the mean
fitness will be

0.04 × 0.4 + 0.32 × 1 + 0.8 × 0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential viability) will
alter the genotype frequencies to

0.04 × 0.4/0.848 : 0.32 × 1/0.848 : 0.8 × 0.64/0.848

or
0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an excess of het-
erozygotes as a result of their high viability. If the genetic system were asexual, these would be
the genotype frequencies at the start of the next generation. The mean fitness would then be
0.0188×0.4+0.3774×1+0.6038×0.8 = 0.862, an increase of 0.02 over the value before selection.
However meiosis intervenes and makes the next generation start in Hardy-Weinberg proportions at
the new gene frequency of 0.0189 + 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431×0.4+0.3290×1+0.6279×0.8 =
0.84856. This is considerably lower than 0.868 but still above the initial mean fitness of 0.848. The
increase of mean fitness by 0.02 due to natural selection has been rolled back by meiosis to a net
increase of 0.00056. The disruptive effect of meiosis on genotypic combinations is apparent.

If the population lacked meiosis, how much higher could its fitness be? This question was first
posed by Morton, Crow, and Muller (1956), who defined and calculated the segregational load. This
they defined as the fractional reduction in the fitness of a population as a result of the existence
of Mendelian segregation. In the presence of overdominance, an asexual population could come to
consist entirely of heterozygotes. In our parameterization, it would then have a mean fitness of
1. An outcrossing population would come to equilibrium at a gene frequency of pe = t/(s + t) for
allele A, which would result in a mean fitness of

w̄ = 1 − sp2
e − t(1 − pe)2

= 1 − st2/(s + t)2 − ts2/(s + t)2

= 1 − st(s + t)/(s + t)2

= 1 − st/(s + t) (II-116)

The fraction by which fitness is reduced by the presence of segregation, relative to the fitness of
Aa, is st/(s + t). This is half the harmonic mean of s and t.

The segregational load calculation is often misinterpreted as meaning that a population segre-
gating at an overdominant locus somehow suffers a loss in fitness. Keep in mind that we have been
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Before meiosis (AA, Aa, aa frequencies not in
H-W proportions):

H-W (i.e., sex) spreads some (half) of the A’s from Aa to A,
noindent and some of the a’s from Aa to aa:

A numerical example will be useful here. Suppose that we have a diploid population with
fitnesses

AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
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0.2076 0.7924

So after meiosis, AA, Aa, aa ratios are p
2, 2pq, q

2, or:
0.0431 : 0.3290 : 0.6279

mean fitness =
0.0431× 0.4+0.3290× 1 + 0.6279× 0.8 = 0.84856



mean fitness without sex =

0.01881× 0.4+0.3774× 1 + 0.6038× 0.8 = 0.862

mean fitness with sex =

0.0431× 0.4+0.3290× 1 + 0.6279× 0.8 = 0.84856

Sex hurts

Question: why then does sex exist?
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We can sum up the case of variation of fitness within a generation by saying that there will be
protected polymorphism if the geometric mean fitness among life stages is overdominant. In the
cyclic case, where the cycle repeats every generation, this is simply the requirement that overall
fitnesses be overdominant, in which case overdominance is necessary as well as sufficient for stable
polymorphism to exist.

There need not be overdominance in any life stage for there to be overdominance in net fitness.
In this sense conflicting directional selection in different parts of the life cycle can cause polymor-
phism. It is important to note that it is the net overdominance which is necessary: in the haploid
or asexual case there is no pattern of conflicting directional selection in different life stages which
can cause polymorphism.

REFERENCES. Haldane and Jayakar (1962) were the first to give the geometric mean over-
dominance condition. The necessary side conditions for stable polymorphism when one allele is
completely recessive were given by Haldane and Jayakar (1962) and, more generally, by Hoekstra
(1975). Gillespie (1973) developed the geometric mean conditions further, and Norman (1975b)
gave a general proof that if fitnesses vary independently from generation to generation, overdomi-
nance of geometric means is both necessary and sufficient for maintenance of a polymorphism.

Gillespie and Langley (1974) have made temporal variation the centerpiece of a general hypoth-
esis for the maintenance of protein polymorphism. They argue that geometric mean overdominance
can arise from standard enzyme kinetics. If the heterozygote has an enzyme activity which is the
arithmetic mean of the activities of the two homozygotes, and if the curve relating fitness to en-
zyme activity is concave downwards, then sufficient variation in the enzyme activities of alleles over
time can result in geometric mean overdominance. This is biologically plausible, which is not the
same as saying that it is important as a cause of real polymorphisms. For further references to
the literature on the theory of temporal variation of fitnesses, the reader may wish to consult my
review article (1976) or the reviews by Hedrick, Ginevan, and Ewing (1976) and Hedrick (1986).

II.11 Frequency-Dependent Fitnesses

If the fitnesses of genotypes vary as a function of the gene frequency or the genotype frequencies,
various complex outcomes are possible, including oscillation of the gene frequency and chaotic
fluctuation. We are most interested in a simpler outcome, stable polymorphism. A natural condition
to examine is frequency-dependent selection in which the rare allele is at an advantage. There
are a number of biological mechanisms which have been proposed which would lead to frequency
dependent selection:

1. Specialization on different limiting resources. If two genotypes eat different foods, then an
individual of the rare genotype will have a more abundent source of food, by virtue of the
rareness of other individuals who eat that food. The same argument will hold for many other
limiting nonfood resources, such as breeding sites.

2. Different diseases or parasites for different genotypes. If each genotype has its own diseases
and parasites, then whichever type is rarer will be less likely to come into contact with carriers
of its own particular pests.

863. Specialization of different predators on different genotypes. When each genotype has its own
predators, then the genotype which is rare will presumably sustain a lower population density
of predators, and hence might suffer a lower mortaility rate from predation.

4. Predator search images: apostatic selection. Many intelligent visual predators form “search
images” of the desired appearance of their prey. They tend to reject potential prey which do
not fit this image. The search image depends on the last few prey eaten. Thus the predators
may tend to avoid taking the rare genotypes, which they have not encountered recently.

5. Rare male advantage. In some species, notably Drosophila melanogaster, males of a rare
genotype seem to have an advantage in mating simply because they are rare. This pattern of
female choice may be an adaptation to avoid inbreeding.

6. Social Interactions. In a social species, if the genotypes differ in their social behavior, the
fitness of a genotype may depend on the frequencies of the genotypes among the individuals
it encounters in the population.

The first four of these mechanisms involve ecological interactions, the last two behavioral inter-
actions. In many of these cases the natural selection would be expected to be density-dependent
as well as frequency-dependent. For example, when population density is low, the first mechanism
(different resources) will not operate, since individuals of both genotypes will find an abundance
of food. When population density is high, the fitnesses will depend on the genotype frequencies.
To analyze the outcome of these kinds of frequency-dependent selection requires a model of the
specific case, including variables for the numbers of predators or parasites, or the amount of each
kind of food resource available. The details of the model will be strongly dependent on the spe-
cific biology involved. In this section, we will examine frequency-dependent selection without this
biological specificity. We will allow the fitnesses to be arbitrarily chosen functions of the gene fre-
quency, in order to see what types of evolutionary outcome are possible, and what the implications
of frequency-dependence are for the mean population fitness.

ASEXUALS AND HAPLOIDS. Suppose that we have two genotypes, A and a, with the
relative fitness of A depending on the genotype (or gene) frequency, p, in a simple linear fashion.
Let

wA = 1 + t − sp

wa = 1.
(II-137)

The equations for the evolution of genotype frequencies then become

p′

1 − p′
= (1 + t − sp)

p

1 − p
(II-138)

and

p′ =
p(1 + t − sp)
1 + (t − sp)p

. (II-139)
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When does fitness maximization fail?
The case of frequency dependent selection
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Simplest case of frequency dependence: haploid A, a
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Figure 2.10: ∆p as a function of p for a case of frequency-dependent selection. The
relative fitness of genotype A is 1.6 − p.

When we compute the change of gene frequency; it is, from (II-139)

∆p = p′ − p = (p(1 + t − sp) − [1 + (t − sp)p])/(1 + (t − sp)p)

= p(1 − p)(t − sp)/(1 + (t − sp)p).
(II-140)

The equilibria of the genotype frequency are the values of p at which ∆p = 0. For this to
occur, either the denominator of (II-140) must be infinite, which is not possible, or the numerator
must be zero. The equilibria then occur at p = 0, p = 1, and p = t/s. This last equilibrium will
lie in the [0, 1] interval if s > t > 0 or if 0 > t > s. Otherwise wA will always be greater than
(less than) wa, and although selection will be frequency-dependent, it will nevertheless always be
directional selection which leads to the substitution of one genotype for another.

Figure 2.10 shows ∆p plotted for particular values of s and t. These values lead the relative
fitness of A to be higher when it is rare and lower when a is rare. It would seem on intuitive grounds
that this should lead to a stable polymorphism. The graph shows that ∆p is positive below the
equilibrium point and negative above it. This shows that p = 0 and p = 1 are both unstable
equilibria. The equilibrium p = t/s will be a stable one provided that (by the stability criterion
developed above)

−2 <
[
d(∆p)

dp

]
p = t/s

< 0. (II-141)

After differentiating (II-140), substituting in p = t/s, and doing some tedious collection of terms
we find that [

d(∆p)
dp

]
p = t/s

= −t
(
1 − t

s

)
. (II-142)
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Equilibrium p when !p = 0
i.e., numerator =0, so p = 0 or p = 1 or p = t/s
Last in [0, 1] if s > t > 0 or if 0 > t > s (o.w., wA > wa)
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Fitness is not maximized at this stable point!

Figure 2.10: ∆p as a function of p for a case of frequency-dependent selection. The
relative fitness of genotype A is 1.6 − p.

When we compute the change of gene frequency; it is, from (II-139)

∆p = p′ − p = (p(1 + t − sp) − [1 + (t − sp)p])/(1 + (t − sp)p)

= p(1 − p)(t − sp)/(1 + (t − sp)p).
(II-140)

The equilibria of the genotype frequency are the values of p at which ∆p = 0. For this to
occur, either the denominator of (II-140) must be infinite, which is not possible, or the numerator
must be zero. The equilibria then occur at p = 0, p = 1, and p = t/s. This last equilibrium will
lie in the [0, 1] interval if s > t > 0 or if 0 > t > s. Otherwise wA will always be greater than
(less than) wa, and although selection will be frequency-dependent, it will nevertheless always be
directional selection which leads to the substitution of one genotype for another.

Figure 2.10 shows ∆p plotted for particular values of s and t. These values lead the relative
fitness of A to be higher when it is rare and lower when a is rare. It would seem on intuitive grounds
that this should lead to a stable polymorphism. The graph shows that ∆p is positive below the
equilibrium point and negative above it. This shows that p = 0 and p = 1 are both unstable
equilibria. The equilibrium p = t/s will be a stable one provided that (by the stability criterion
developed above)

−2 <
[
d(∆p)

dp

]
p = t/s

< 0. (II-141)

After differentiating (II-140), substituting in p = t/s, and doing some tedious collection of terms
we find that [

d(∆p)
dp

]
p = t/s

= −t
(
1 − t

s

)
. (II-142)

88

Figure 2.10: ∆p as a function of p for a case of frequency-dependent selection. The
relative fitness of genotype A is 1.6 − p.

When we compute the change of gene frequency; it is, from (II-139)

∆p = p′ − p = (p(1 + t − sp) − [1 + (t − sp)p])/(1 + (t − sp)p)

= p(1 − p)(t − sp)/(1 + (t − sp)p).
(II-140)

The equilibria of the genotype frequency are the values of p at which ∆p = 0. For this to
occur, either the denominator of (II-140) must be infinite, which is not possible, or the numerator
must be zero. The equilibria then occur at p = 0, p = 1, and p = t/s. This last equilibrium will
lie in the [0, 1] interval if s > t > 0 or if 0 > t > s. Otherwise wA will always be greater than
(less than) wa, and although selection will be frequency-dependent, it will nevertheless always be
directional selection which leads to the substitution of one genotype for another.

Figure 2.10 shows ∆p plotted for particular values of s and t. These values lead the relative
fitness of A to be higher when it is rare and lower when a is rare. It would seem on intuitive grounds
that this should lead to a stable polymorphism. The graph shows that ∆p is positive below the
equilibrium point and negative above it. This shows that p = 0 and p = 1 are both unstable
equilibria. The equilibrium p = t/s will be a stable one provided that (by the stability criterion
developed above)

−2 <
[
d(∆p)

dp

]
p = t/s

< 0. (II-141)

After differentiating (II-140), substituting in p = t/s, and doing some tedious collection of terms
we find that [

d(∆p)
dp

]
p = t/s

= −t
(
1 − t

s

)
. (II-142)

88

s = 1.0; t = 0.6; pe = t/s = 0.6



Fitness is not maximized at this stable point!

At equilibrium, p = t/s, wA = 1 = wa

so mean relative fitness is 1:

The equilibrium is only a relevant one if t/s is between zero and one. If t is negative, the
equilibrium is unstable. This correponds to frequency-dependent fitnesses in which wA < wa when
A is rare, and the opposite when A is common. It should be obvious that this will lead to an
unstable equilibrium at the gene frequency at which wA = wa, with stable equilibria at p = 0 and
p = 1. When t is positive, the quantity (II-142) will be negative (if t/s < 1, which we assume).
There is one further restriction on t and s. It makes no sense to have negative fitnesses, so when t
and s are positive we must have 1 + t − s > 0, so that s − t < 1. Consideration of the right-hand
side of equation (II-142) shows it to be −(t/s)(s− t), so that it will never be below -1 in biologically
relevant cases. In this case we always have a stable equilibrium with no overshooting. While it is
quite possible that there will be oscillations or chaos in frequency-dependent cases, the particular
linear dependence of wA on p which we have used here has ruled this out.

Does frequency-dependent selection necessarily maximize some measure of the mean fitness?
This is easily investigated in the present case. At the polymorphic equilibrium p = t/s, wA = 1 =
wa, so that the mean relative fitness is 1, since

w̄ = pwA + (1 − p)wa = p + (1 − p) = 1. (II-143)

The maximum value of w̄ can be found by writing

w̄ = pwA + (1 − p)wa

= p(1 + t − sp) + (1 − p)

= 1 + p(t − sp).

(II-144)

This is a quadratic function of p which can be maximized by equating its derivative to zero:

dw̄

dp
= t − 2sp = 0, (II-145)

so that the maximum or minimum occurs at

p =
t

2s

where
w̄ = 1 +

t2

4s
. (II-146)

If s is positive, which will be the case when we have a stable polymorphic equilibrium, the
quadratic has a negative coefficient of p2 so that the stationary point p = t/(2s) is the maximum.
There is thus no correspondence between the polymorphic equilibrium and the value of p which
maximizes the mean relative fitness. In fact, maximum occurs at half the equilibrium gene frequency
in this case. If the population approaches the equilibrium from above, it will have a continually
increasing w̄. But if instead it approaches from below, w̄ at first increases, then decreases. For the
particular example in the Figure, t = 0.6 and s = 1, so that the equilibrium lies at pe = 0.6/1 = 0.6.
The mean fitness there is 1. The maximum mean fitness is achieved at pmax = 0.6/2 = 0.3, where
w̄ = 1.09.

Why is w̄ not maximized? Since wA is a function of p, the current fitness of the A genotype
is not necessarily a good guide to its future fitness. Natural selection increases the frequency of
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1 − p
(II-138)

and

p′ =
p(1 + t − sp)
1 + (t − sp)p

. (II-139)
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The equilibrium is only a relevant one if t/s is between zero and one. If t is negative, the
equilibrium is unstable. This correponds to frequency-dependent fitnesses in which wA < wa when
A is rare, and the opposite when A is common. It should be obvious that this will lead to an
unstable equilibrium at the gene frequency at which wA = wa, with stable equilibria at p = 0 and
p = 1. When t is positive, the quantity (II-142) will be negative (if t/s < 1, which we assume).
There is one further restriction on t and s. It makes no sense to have negative fitnesses, so when t
and s are positive we must have 1 + t − s > 0, so that s − t < 1. Consideration of the right-hand
side of equation (II-142) shows it to be −(t/s)(s− t), so that it will never be below -1 in biologically
relevant cases. In this case we always have a stable equilibrium with no overshooting. While it is
quite possible that there will be oscillations or chaos in frequency-dependent cases, the particular
linear dependence of wA on p which we have used here has ruled this out.

Does frequency-dependent selection necessarily maximize some measure of the mean fitness?
This is easily investigated in the present case. At the polymorphic equilibrium p = t/s, wA = 1 =
wa, so that the mean relative fitness is 1, since

w̄ = pwA + (1 − p)wa = p + (1 − p) = 1. (II-143)

The maximum value of w̄ can be found by writing

w̄ = pwA + (1 − p)wa

= p(1 + t − sp) + (1 − p)

= 1 + p(t − sp).

(II-144)

This is a quadratic function of p which can be maximized by equating its derivative to zero:

dw̄

dp
= t − 2sp = 0, (II-145)

so that the maximum or minimum occurs at

p =
t

2s

where
w̄ = 1 +

t2

4s
. (II-146)

If s is positive, which will be the case when we have a stable polymorphic equilibrium, the
quadratic has a negative coefficient of p2 so that the stationary point p = t/(2s) is the maximum.
There is thus no correspondence between the polymorphic equilibrium and the value of p which
maximizes the mean relative fitness. In fact, maximum occurs at half the equilibrium gene frequency
in this case. If the population approaches the equilibrium from above, it will have a continually
increasing w̄. But if instead it approaches from below, w̄ at first increases, then decreases. For the
particular example in the Figure, t = 0.6 and s = 1, so that the equilibrium lies at pe = 0.6/1 = 0.6.
The mean fitness there is 1. The maximum mean fitness is achieved at pmax = 0.6/2 = 0.3, where
w̄ = 1.09.

Why is w̄ not maximized? Since wA is a function of p, the current fitness of the A genotype
is not necessarily a good guide to its future fitness. Natural selection increases the frequency of
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whichever genotype has the higher fitness. In doing so it alters the fitness of A for the worse.
Natural selection will maximize mean fitness only if current fitness is a good guide to future fitness.

DIPLOIDS. All of the phenomena which we see in haploids and asexual cases of frequency-
dependence also occur in diploids. If we consider a diploid population with multiplicative fitnesses,
little is changed. If the fitnesses are

AA Aa aa
[1 + s(p)]2 1 + s(p) 1

with the selection coefficient s a function of gene frequency, this will have exactly the same gene
frequency behavior as the haploid case in which fitnesses are

A a
1 + s(p) 1.

Equilibria will occur at p = 0, p = 1, and at any value of p for which s(p) = 0. If s(p) is positive
below a polymorphic equilibrium and negative above it, the equilibrium could be stable, but only
if wild oscillations from overshooting can be ruled out. By writing an expression for ∆p containing
s(p), differentiating this and requiring that we be at a point where s(p) = 0, we find that for local
stability of the polymorphism, the slope of s(p) at the equilibrium point must be between 0 and
−2/[pe(1 − pe)].

When all three genotypes have fitnesses which are arbitrary functions of the gene frequency,
there is hardly any limit to the complexity of the behavior of the model. The equations of change
of the gene frequency are the usual ones, but now with the fitnesses being functions of p. The
equilibria of the model are at the points p = 0, p = 1, and

pe =
wAa(pe) − waa(pe)

[wAa(pe) − waa(pe)] + [wAa(pe) − wAA(pe)]
(II-147)

This equation may have many roots, depending on the way in which the w’s depend on p. We
can divide w’s by wAa(p) and write fitnesses as

AA Aa aa
1 − s(pe) 1 1 − t(pe)

in which case the equilibria are at p = 0, p = 1, and

pe =
t(pe)

s(pe) + t(pe)
. (II-148)

The principle at work here is that in any generation the gene frequency changes according to
the momentary fitnesses, so that a polymorphic equilibrium can only occur if the fitnesses at the
value of p yield an equilibrium at that value of p. However it is now neither necessary nor sufficient
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Why this causes problems:
Current fitness is no longer a good guide
to future fitness!



intention of Morton, Crow, and Muller to argue that a high segregational load creates a problem
for the population. Their computation was part of a rather sophisticated attempt to determine
whether natural variation in viability in humans is maintained by recurrent mutation to deleterious
alleles or by the presence of overdominant polymorphism. The segregational load computation is
part of the analysis of the so-called “B/A Ratio”. The results are equivocal, and this method has
fallen from use. The interested reader will find accounts of this controversy in Lewontin (1974, pp.
74-82) and two books by Wallace (1970, chap. 9; 1968, chap. 15).

II.8 Selection and Fitness : Multiple Alleles

When we have multiple alleles in an outcrossing diploid population with constant relative fitnesses,
the principle that w̄ increases as a result of natural selection becomes an essential part of predicting
the equilibrium gene frequencies and analyzing the stability of these equilibria. We will only sketch
the method in this section. We start by formulating the equations of change of gene frequencies.

EFFECT OF SELECTION. We can directly generalize equations (II-31) and (II-35), the
basic equations for gene frequency change with two alleles. The extension is straightforward. The
genotype frequency of the (ordered) genotype AiAj immediately after fertilization is pipj . This
holds for all i and all j, including the case where i = j. The contribution from these individuals
to the pool of Ai gametes will be proportional to 1

2pipjwij , wij being the fitness of AiAj . The
total frequency of Ai copies in the gene pool, those Ai copies that come from the left-hand gene,
is the sum over j of 1

2pipjwij. Of course, an Ai in the gene pool could also have come from an
individual of genotype AjAi, from which it is a copy of the right-hand gene, so there is a similar
sum of 1

2pjpiwij . The total number of genes in the gamete pool is the sum of these expressions over
all i and j, so the gene frequency of Ai in the gene pool is:

p′i =

1
2

n∑
j=1

pipjwij + 1
2

n∑
j=1

pjpiwij

2 × 1
2

∑ ∑
pipjwij

=
pi(

∑
j

pjwij)

w̄
, (II-118)

where w̄ =
∑

i
∑

j pipjwij , the mean fitness of the population. In this equation
∑

j pjwij is a quite
straightforward quantity: the mean fitness of the organisms in which Ai alleles find themselves,
weighted by the numbers of Ai alleles they contain. We call it w̄i. As such these are direct parallels
to the quantities w̄A and w̄a which we used in the two-allele argument. Then (II-118) can be
rewritten as

p′i =
piw̄i

w̄
(II-119)

which also leads us directly to

∆pi = p′i − pi = pi
w̄i

w̄
− pi

= pi
(w̄i − w̄)

w̄
. (II-120)
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Equllibrium conditions

At equillibrium, for allele i, either
pi=0 or w̄=0



Δp =
p(1− p)
w

dw
dp

The shape of things to come
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The multiple allele jet-fuel formula
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