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Evolutionary Biology

R.C. Berwick & a cast of thousands
Today: the forces of evolution

The deterministic model:
F=ma for gene dynamics: review
The algebra of natural selection: the lab

Why biology is not like physics: what goes off the 
rails - frequency dependent fitness

Does selection maximize fitness?
Does sex make you fitter?
The multivariate case: sickle cell anemia example
Change or die: the case for mutation

The forces of evolution, II
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The algebra of selection - J.B.S. Haldane, 1924
1 gene in 2 different forms (alleles)
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Newton’s F=ma for evolutionary systems
Basic dynamical system map: compute p! from p
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Dynamics: Compute " p and also w vs.  p
gives the ‘jet fuel’ formula for gene frequency change under 

selection
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!p = p
w̄1−w̄

w̄

Understanding the basic !p formula
“The company you keep”

Fitness of organisms in
which A finds itself

Divided by fitness of all
organisms
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F=ma
The jet fuel formula for ‘evolutionary change’
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Direction of change
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Natural selection works by local gradient ascent

Is weak selection effective?
Suppose (relative) fitnesses are:

AA Aa aa

(1+s)
2

1+s 1

x (1+s) x (1+s)

So in this example each change of

a to A multiplies the fitness

by  (1+s), so that it increases it

by a fraction  s.

0.01 ! 0.1 0.1 ! 0.5 0.5 ! 0.9 0.9 ! 0.99s

The time for gene frequency change, in generations, turns out to be:

change of gene frequencies
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Population Genetics – p.28/47

What happens to variation under selection?



The shape of things now

The shape of things now



Mean fitness always increases...

But...this is not always the same thing 
as globally maximizing fitness...
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Solving the fundamental recurrence equation
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1+ s            1+ sh            1    e.g.,

1                  1                   1

(1+ s)         (1+ s)            1          "dominance"

1                 (1+ s)            (1+ s)   "recessive"

1+ s            1+ sh            1           "heterozygote over/under dominant"

NB: only a few 
special cases have 
explicit solutions!



so that

p′ =
p(1 − sp)

1 − sp2 − t(1 − p)2
, (II-63)

∆p =
p(1 − p)[t − (s + t)p]
1 − sp2 − t(1 − p)2
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and
p′
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1 − t(1 − p)

)
p

1 − p
. (II-65)

In subsequent sections of this chapter we will return to each of these cases to develop the
implications of all of the formulas just given.

II.5 Rates of Change of Gene Frequency

When the relative fitneses of the genotypes do not change from generation to generation, we can use
the formulas for change in gene frequency to examine the speed to gene frequency change. Among
the questions which can be answered this way is: how effective will weak selection be?

ASEXUALS AND HAPLOIDS. Gene frequency change through time is easiest to follow in
the asexual (or haploid) case Here time will always be measured in generations. Equation (II-13)
shows us immediately that

p(t)
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(0)
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p(0)
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, (II-66)

since the ratio of gene frequencies is multiplied by the same amount (1 + s) in each generation.
We can take this equation and solve it for t, given the value of s and the initial and final gene
frequencies. We obtain, taking natural logarithms of both sides in (II-66):

t =
[
ln

(
p(t)

A

p(t)
a

)
− ln

(
p(0)
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p(0)
a

)]
/ ln(1 + s). (II-67)

This allows us to calculate how many generations it will take for a given gene frequency change.
For example, if a population starts at gene frequency 0.01 for A and ends at 0.99, with s = 0.01,
then we can substitute into (II-67), keeping in mind that pa = 1 − pA

t =
[
ln

(
0.99
0.01

)
− ln

(
0.01
0.99

)]
/ ln(1.01)

= [ln 99 − ln(1/99)]/ ln(1.01)

= 923.6115 generations

(II-68)

We do not get a whole number of generations in this case, which simply means that the gene
frequency pA will be below 0.99 after 923 generations, but above 0.99 after 924 generations.

An interesting comparison is obtained by doubling the selection coefficient s to 0.02. Then the
same gene frequency change (from 0.01 to 0.99) requires 464.09 generations, a bit more than half
the time required before. Table 2.1 shows this calculation for a variety of selection coefficients.
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Haploid case (no Hardy-Weinberg sexual mixing)

Fitness ratios  1+s : 1 (for fitness A:a)

s= selection coefficient
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frequency pA will be below 0.99 after 923 generations, but above 0.99 after 924 generations.
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Rates of change in gene frequencies
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II.5 Rates of Change of Gene Frequency

When the relative fitneses of the genotypes do not change from generation to generation, we can use
the formulas for change in gene frequency to examine the speed to gene frequency change. Among
the questions which can be answered this way is: how effective will weak selection be?

ASEXUALS AND HAPLOIDS. Gene frequency change through time is easiest to follow in
the asexual (or haploid) case Here time will always be measured in generations. Equation (II-13)
shows us immediately that

p(t)
A

p(t)
a

= (1 + s)t p
(0)
A

p(0)
a

, (II-66)

since the ratio of gene frequencies is multiplied by the same amount (1 + s) in each generation.
We can take this equation and solve it for t, given the value of s and the initial and final gene
frequencies. We obtain, taking natural logarithms of both sides in (II-66):

t =
[
ln

(
p(t)

A

p(t)
a

)
− ln

(
p(0)

A

p(0)
a

)]
/ ln(1 + s). (II-67)

This allows us to calculate how many generations it will take for a given gene frequency change.
For example, if a population starts at gene frequency 0.01 for A and ends at 0.99, with s = 0.01,
then we can substitute into (II-67), keeping in mind that pa = 1 − pA

t =
[
ln

(
0.99
0.01

)
− ln

(
0.01
0.99

)]
/ ln(1.01)

= [ln 99 − ln(1/99)]/ ln(1.01)

= 923.6115 generations

(II-68)

We do not get a whole number of generations in this case, which simply means that the gene
frequency pA will be below 0.99 after 923 generations, but above 0.99 after 924 generations.

An interesting comparison is obtained by doubling the selection coefficient s to 0.02. Then the
same gene frequency change (from 0.01 to 0.99) requires 464.09 generations, a bit more than half
the time required before. Table 2.1 shows this calculation for a variety of selection coefficients.

47

s=0.01; A=0.01
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Special cases of fitness - geometric ratios

of p. Subtracting p from both sides of (II-31):

∆p = p′ − p

=
(
p2wAA + p(1 − p)wAa − p[p2wAA + 2p(1 − p)wAa + (1 − p)2waa]

)
/

(
p2wAA + 2p(1 − p)wAa + (1 − p)2waa

)
= (p2 − p3)wAA + p(1 − p)(1 − 2p)wAa − p(1 − p)2waa/w̄

= p(1 − p)[p(wAA − wAa) + (1 − p)(wAa − waa)]/w̄

= p(1 − p)(w̄A − w̄a)/w̄.

(II-34)

Alternatively
∆p = p′ − p

= p2wAA+p(1−p)wAa−pw̄
w̄

= p(pwAA+(1−p)wAa)−pw̄
w̄

= p(w̄A−w̄)
w̄ .

(II-35)

Note the close analogies between the diploid and the asexual (or haploid) cases. Equation (II-
35) is the analogue of (II-19), equation (II-34) of (II-20), and (II-33) of (II-17). Equation (II-32)
can be rewritten as

p′

1 − p′
=

p

1 − p

w̄A

w̄a
(II-36)

in which form it is closely analogous to the relative fitness version of equation (II-9). In each case
the analogy is the same: replacing wA by w̄A and wa by w̄a converts asexual or haploid equations
into diploid equations.

We are now in a position to examine some special cases of importance:

MULTIPLICATIVE (GEOMETRIC) FITNESSES. Suppose that the fitnesses are:

AA Aa aa
(1 + s)2 1 + s 1

In this case when we alter a genotype by replacing one a by an A, we multiply the fitness by
1 + s. Then

w̄A = (1 + s)2p + (1 + s)(1 − p)

= (1 + s)[p(1 + s) + 1 − p]

= (1 + s)[1 + sp], (II-37)

w̄a = 1 + sp, (II-38)
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and
w̄ = p2(1 + s)2 + 2p(1 − p)(1 + s) + (1 − p)2

= [p(1 + s) + 1 − p]2

= (1 + sp)2.

(II-39)

The equations for gene frequencies in the next generation become

p′ =
p(1 + s)(1 + sp)

(1 + sp)2

=
p(1 + s)
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, (II-40)
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p(1 − p)[(1 + s)(1 + sp) − (1 + sp)]

(1 + sp)2

=
sp(1 − p)
1 + sp

. (II-42)

A comparison of these equestions with the asexual case will show that (II-41) is precisely the
same as (II-13). This is the particular utility of the multiplicative case: it is the counterpart to the
asexual case. In both cases replacement of an a gene by an A gene multiplies fitness by 1 + s, and
in both cases the change in gene frequency is the same, provided we are willing to consider cases
with equal values of the selection coefficient s.

ADDITIVE FITNESSES. Many people have a dogmatic belief that additivity is always
simpler than multiplicativity. When fitnesses are additive:

AA Aa aa
1 + 2s 1 + s 1

the heterozygote fitness is the arithmetic mean of the fitnesses of the two homozygotes (in the
multiplicative case it was the geometric mean). Now

w̄A = p(1 + 2s) + (1 − p)(1 + s)

= 1 + s + sp,
(II-43)

w̄a = p(1 + s) + (1 − p)

= 1 + sp,
(II-44)
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in both cases the change in gene frequency is the same, provided we are willing to consider cases
with equal values of the selection coefficient s.

ADDITIVE FITNESSES. Many people have a dogmatic belief that additivity is always
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so that
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In subsequent sections of this chapter we will return to each of these cases to develop the
implications of all of the formulas just given.

II.5 Rates of Change of Gene Frequency

When the relative fitneses of the genotypes do not change from generation to generation, we can use
the formulas for change in gene frequency to examine the speed to gene frequency change. Among
the questions which can be answered this way is: how effective will weak selection be?

ASEXUALS AND HAPLOIDS. Gene frequency change through time is easiest to follow in
the asexual (or haploid) case Here time will always be measured in generations. Equation (II-13)
shows us immediately that

p(t)
A

p(t)
a

= (1 + s)t p
(0)
A

p(0)
a

, (II-66)

since the ratio of gene frequencies is multiplied by the same amount (1 + s) in each generation.
We can take this equation and solve it for t, given the value of s and the initial and final gene
frequencies. We obtain, taking natural logarithms of both sides in (II-66):

t =
[
ln

(
p(t)

A

p(t)
a

)
− ln

(
p(0)

A

p(0)
a

)]
/ ln(1 + s). (II-67)

This allows us to calculate how many generations it will take for a given gene frequency change.
For example, if a population starts at gene frequency 0.01 for A and ends at 0.99, with s = 0.01,
then we can substitute into (II-67), keeping in mind that pa = 1 − pA

t =
[
ln

(
0.99
0.01

)
− ln

(
0.01
0.99

)]
/ ln(1.01)

= [ln 99 − ln(1/99)]/ ln(1.01)

= 923.6115 generations

(II-68)

We do not get a whole number of generations in this case, which simply means that the gene
frequency pA will be below 0.99 after 923 generations, but above 0.99 after 924 generations.

An interesting comparison is obtained by doubling the selection coefficient s to 0.02. Then the
same gene frequency change (from 0.01 to 0.99) requires 464.09 generations, a bit more than half
the time required before. Table 2.1 shows this calculation for a variety of selection coefficients.
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Asexual case (logistic growth):

Geometric fitness ratios
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A comparison of these equestions with the asexual case will show that (II-41) is precisely the
same as (II-13). This is the particular utility of the multiplicative case: it is the counterpart to the
asexual case. In both cases replacement of an a gene by an A gene multiplies fitness by 1 + s, and
in both cases the change in gene frequency is the same, provided we are willing to consider cases
with equal values of the selection coefficient s.

ADDITIVE FITNESSES. Many people have a dogmatic belief that additivity is always
simpler than multiplicativity. When fitnesses are additive:

AA Aa aa
1 + 2s 1 + s 1

the heterozygote fitness is the arithmetic mean of the fitnesses of the two homozygotes (in the
multiplicative case it was the geometric mean). Now

w̄A = p(1 + 2s) + (1 − p)(1 + s)

= 1 + s + sp,
(II-43)

w̄a = p(1 + s) + (1 − p)

= 1 + sp,
(II-44)
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Additive fitness ratios

No analytic solutions for p in terms of t!

Figure 2.3: The course of gene frequency change over 50 generations when fitnesses of
AA, Aa, and aa are 2.3 : 2.3 : 1 (circles) and 2.3 : 1 : 1 (squares). Initial frequency of
A is 0.02.

we may recall that the change in gene frequency is

∆p =
p(1 − p)[t − (s + t)p]
1 − sp2 − t(1 − p)2

(II-98)

which we have already seen as equation (II-64). We can start by inquiring whether there are any
gene frequencies p for which ∆p is zero. There are four possible ways ∆p could be zero:

1. The denominator 1 − sp2 − t(1 − p)2 could be infinite,

2. p could be zero,

3. 1 − p could be zero,

4. t − (s + t)p could be zero.

The first is impossible as long as t and s are not finite and are not larger than 1. The second
and third represent the cases where A or a are absent from the population. They reflect the rather
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and
w̄ = 1 + 2sp, (II-45)

so that

p′ =
p(1 + s + sp)

1 + 2sp
. (II-46)

and

∆p =
sp(1 − p)
1 + 2sp

. (II-47)

This last equation has a relatively simple numerator and denominator, but unlike (II-42) it is
not identical to the haploid case. If s is taken to be small, both additive and multiplicative cases
will behave similarly, as we will see later in this chapter. For the moment we need only note that
the numerators of (II-42) and (II-47) are the same, and the denominators 1+2sp+s2p2 and 1+2sp
are nearly the same if s is small. But the two cases are not identical.

A RECESSIVE GENE. If the A allele is recessive, so that fitnesses are:

AA Aa aa
1 + s 1 1

then

w̄A = 1 + sp, (II-48)

w̄a = 1, (II-49)

and
w̄ = 1 + sp2. (II-50)

The formulas for change of gene frequency are

p′ =
p(1 + sp)
1 + sp2

, (II-51)

∆p =
sp2(1 − p)
1 + sp2

, (II-52)

and
p′

1 − p′
= (1 + sp)

p

1 − p
. (II-53)

One can see from these formulas, especially the latter two, that selection will be relatively weak
if the recessive allele is rare. This follows from the p2 term in (II-51), and (II-53) shows directly
that the effective selection coefficient of allele A is not s but sp. To see this, compare (II-53) with
(II-13).

A DOMINANT GENE. When the A allele is dominant, so that fitnesses are:
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1 + 2s : 1 + s : 1

Table 2.7: Times required to change through various gene frequency ranges when s = 0.01.

Favored Allele
From To Dominant Multiplicative Recessive
0.001 0.01 232.07 231.32 90,231.2
0.01 0.1 249.89 240.99 9,239.79
0.1 0.5 308.61 220.82 1,019.72
0.5 0.9 1,019.72 220.82 308.61
0.9 0.99 9,239.79 240.89 249.89
0.99 0.999 90,231.2 231.32 232.07

Two properties of the numbers in Table 2.7 are immediately noticeable. First, we can see
that it takes a very long time to change the gene frequency of a rare recessive allele. This is true
irrespective of whether that allele is advantageous or deleterious. The top part of the Recessive
column shows the long times needed to increase the frequency of the advantageous recessive A allele.
The numbers at the bottom of the Dominant column show a similar phenomenon. The a allele is
now the recessive allele, and it is deleterious and in the process of being eliminated. The slowness
of change is associated with rareness of the recessive allele rather than whether it is advantageous
or deleterious.

The second feature of Table 2.7 which is striking is the similarity of the top ends of the Domi-
nant and Multiplicative columns, and the similarity of the bottom ends of the Multiplicative and
Recessive columns. This is no mere numerical accident. The fitnesses of the genotypes are:

AA Aa aa
Dominant 1 + s 1 + s 1
Multiplicative (1 + s)2 1 + s 1

These differ only in the fitness of AA. When A is rare, almost all the A genes in the population
will occur in Aa heterozygotes, and almost all a genes in aa homozygotes. This is guaranteed by
the fact that in each generation the zygotes start out in Hardy-Weinberg proportions. The relative
mean fitnesses of A- and a- bearing individuals will be nearly 1 + s : 1 in both cases. As long as
A is rare, we expect the course of gene frequency change to be nearly the same in both cases, and
this is precisely what Table 2.7 shows.

It is less easy to see why the Multiplicative and Recessive cases behave similarly, but the same
principle is involved. Superficially, the genotypic fitnesses look different:

AA Aa aa
Multiplicative (1 + s)2 1 + s 1
Recessive 1 + s 1 1

We are interested in the case when a is rare, so we want to compare the fitnesses of AA and
Aa. Since these are relative fitnesses, we can use Aa as the standard genotype whose fitness we set
to 1. Now the Multiplicative case changes to

AA Aa aa
1 + s 1 1/(1 + s)
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R

Figure 2.2: Change of the gene frequency plotted against gene frequency of A for cases in
which the favored allele is dominant (D), multiplicative (M) and recessive (R). Fitnesses
of AA : Aa : aa genotypes were respectively 2.3 : 2.3 : 1, 5.29 : 2.3 : 1, and 2.3 : 1 : 1.

II.6 Overdominance and Underdominance

In all cases considered in the previous section, we were dealing with patterns of fitness which resulted
in the substitution of one allele for another, so that the only questions of interest are the rates of
change of gene frequency through various ranges. When the fitness of the heterozygote lies outside
the range of the homozygote fitnesses, the situation is altered dramatically. When the heterozygote
fitness exceeds that of either homozygote, selection can maintain a stable polymorphism, and
when the heterozygote has the lowest fitness, the outcome of selection can depend on the initial
composition of the population. Both of these behaviors are of great biological interest.

With a few trivial exceptions, we cannot solve exactly for future gene frequencies in either of
these cases, but we can gain much insight by looking at the change ∆p of gene frequency as a
function of the gene frequency, p. When the fitnesses are

AA Aa aa
1 − s 1 1 − t
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Figure 2.4: The change in gene frequency (∆p) plotted against the gene frequency in a
case of overdominance where fitnesses of AA : Aa : aa are 0.85 : 1 : 0.7.

not trouble us, since the multiplier (1 + a) is only relevant in a region small enough to allow us
to approximate the ∆p curve as a straight line. Farther from the equilibrium the higher-order
derivatives of ∆p become relevant, inevitably in such a way as to keep the gene frequency between
0 and 1.

Our criterion for local stability is this:

−2 <
[
d(∆p)

dp

]
p = pe

< 0, (II-103)

the brackets indicating evaluation at p = pe. There are two sorts of qualification of this picture
necessary. We have not investigated what will happen when a is exactly equal to 0, -1, or -2. In
each case the exact behavior depends on the higher-order terms in ∆p. The results do not modify
(II-103) in any essential way. The second qualification is a more serious one. When generations
are continuous instead of discrete, oscillation is no longer a possibility. In that case the stability
is simply determined by the sign of dp/dt (the quantity analogous to ∆p). If it is positive below
the equilibrium and negative above it, the equilibrium is stable, and not otherwise. Overshooting
is impossible because the gene frequency would have to pass smoothly through pe in order to
overshoot, and once it reached pe it would not change further. There is an analogous damping of
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equilibrium within that region resulted in the gene frequency returning to the equilibrium. Thus if
the gene frequency will return to its equilibrium when changed by less than (say) 1%, we describe
the equilibrium as locally stable. If a perturbation of (say) 20% would result in no return to the
equilibrium, then this equilibrium is not globally stable. If an equilibrium is not locally stable, we
say that it is unstable.

To investigate local stability, it is sufficient to consider what happens when the gene frequency
is moved an infinitesimal amount. If it always returns, it is necessarily locally stable, if not it
is unstable. At the equilibrium point, ∆p = 0. Figure 2.4 shows a plot of ∆p aginst p for an
overdominant case in which fitnesses are 0.7 : 1 : 0.85. There are three equilibrium points, at
p = 0, p = 1, and p = 0.333. It seems that p = 0 and p = 1 must be unstable equilibria. When p
is perturbed just above p = 0, ∆p is positive in that region. Thus p will continue to increase away
from the equilibrium. By much the same reasoning p = 1 also seems unstable. Any change of gene
frequency which makes p a bit less than 1 puts it in a region where p continues to decrease away
from 1. The equilibrium at p = 0.333 looks locally stable, but a casual glance is not enough to
determine its stability.

If we assume (as is true in our example) that f(p), and hence also ∆p, are continuous functions
of p, we can make a simple algebraic analysis of local stability. In the vicinity of an equilibrium let
us assume that the ∆p curve can be approximated by a straight line. If x is the distance between
p and pe, so that p = pe + x, then we will approximate ∆p by ax. The quantity a will be the slope
of the ∆p curve as it passes through p = pe. In the next generation, the deviation x′ from the
equilibrium will be

x′ = p + ∆p − pe = pe + x + ∆p − pe

= x + ∆p " x + ax = x(1 + a)
(II-102)

When we are close to the equilibrium, the value of x is thus multiplied by 1 + a each generation.
After t generations, it will be (1 + a)t times its current value.

When a is positive (1 + a)t is a positive number greater than 1, and it will grow with t. This
is the situation near the equilibria p = 0 and p = 1, where the slope a of the ∆p curve is positive.
Any movement of p from p = 0 to a very small positive quantity will create a positive deviation x
which then grows until p leaves the immediate vicinity of p = 0. Near p = 1, if p is set just below
1, this is a negative value of x which also becomes steadily more negative until p departs from the
region near 1. Thus the algebra confirms our suspicions about the stability of p = 0 and p = 1.

When −1 < a < 0, 1 + a lies between 0 and 1. Raising 1 + a to the t-th power makes
it approach zero without ever becoming negative. This is the case in which p approaches the
equilibrium smoothly without ever overshooting. Whatever the initial sign of the deviation x, it
remains of the same sign but goes to zero. When −2 < a < −1, 1 + a lies between -1 and 0.
Multiplying x by 1 + a will change its sign but reduce its magnitude. That corresponds to the
case where there is overshooting of the equilibrium, but the overshoot leaves the gene frequency
each time closer to the equilibrium than it was. The gene frequency oscillates, but with decreasing
amplitude, and ultimately converges to the equilibrium.

Finally, when a < −2, 1+a < −1 so that the deviation x changes sign each generation and grows
in amplitude. The overshoot is so great as to leave the population farther from the equilibrium
each time. It oscillates away from the equilibrium. Extrapolation of this behavior would lead to
an absurdity: the gene frequency would ultimately be greater than 1 or less than 0. This need
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Stability AnalysisFigure 2.4: The change in gene frequency (∆p) plotted against the gene frequency in a
case of overdominance where fitnesses of AA : Aa : aa are 0.85 : 1 : 0.7.
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]
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< 0, (II-103)

the brackets indicating evaluation at p = pe. There are two sorts of qualification of this picture
necessary. We have not investigated what will happen when a is exactly equal to 0, -1, or -2. In
each case the exact behavior depends on the higher-order terms in ∆p. The results do not modify
(II-103) in any essential way. The second qualification is a more serious one. When generations
are continuous instead of discrete, oscillation is no longer a possibility. In that case the stability
is simply determined by the sign of dp/dt (the quantity analogous to ∆p). If it is positive below
the equilibrium and negative above it, the equilibrium is stable, and not otherwise. Overshooting
is impossible because the gene frequency would have to pass smoothly through pe in order to
overshoot, and once it reached pe it would not change further. There is an analogous damping of
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equilibrium within that region resulted in the gene frequency returning to the equilibrium. Thus if
the gene frequency will return to its equilibrium when changed by less than (say) 1%, we describe
the equilibrium as locally stable. If a perturbation of (say) 20% would result in no return to the
equilibrium, then this equilibrium is not globally stable. If an equilibrium is not locally stable, we
say that it is unstable.

To investigate local stability, it is sufficient to consider what happens when the gene frequency
is moved an infinitesimal amount. If it always returns, it is necessarily locally stable, if not it
is unstable. At the equilibrium point, ∆p = 0. Figure 2.4 shows a plot of ∆p aginst p for an
overdominant case in which fitnesses are 0.7 : 1 : 0.85. There are three equilibrium points, at
p = 0, p = 1, and p = 0.333. It seems that p = 0 and p = 1 must be unstable equilibria. When p
is perturbed just above p = 0, ∆p is positive in that region. Thus p will continue to increase away
from the equilibrium. By much the same reasoning p = 1 also seems unstable. Any change of gene
frequency which makes p a bit less than 1 puts it in a region where p continues to decrease away
from 1. The equilibrium at p = 0.333 looks locally stable, but a casual glance is not enough to
determine its stability.

If we assume (as is true in our example) that f(p), and hence also ∆p, are continuous functions
of p, we can make a simple algebraic analysis of local stability. In the vicinity of an equilibrium let
us assume that the ∆p curve can be approximated by a straight line. If x is the distance between
p and pe, so that p = pe + x, then we will approximate ∆p by ax. The quantity a will be the slope
of the ∆p curve as it passes through p = pe. In the next generation, the deviation x′ from the
equilibrium will be

x′ = p + ∆p − pe = pe + x + ∆p − pe

= x + ∆p " x + ax = x(1 + a)
(II-102)

When we are close to the equilibrium, the value of x is thus multiplied by 1 + a each generation.
After t generations, it will be (1 + a)t times its current value.

When a is positive (1 + a)t is a positive number greater than 1, and it will grow with t. This
is the situation near the equilibria p = 0 and p = 1, where the slope a of the ∆p curve is positive.
Any movement of p from p = 0 to a very small positive quantity will create a positive deviation x
which then grows until p leaves the immediate vicinity of p = 0. Near p = 1, if p is set just below
1, this is a negative value of x which also becomes steadily more negative until p departs from the
region near 1. Thus the algebra confirms our suspicions about the stability of p = 0 and p = 1.

When −1 < a < 0, 1 + a lies between 0 and 1. Raising 1 + a to the t-th power makes
it approach zero without ever becoming negative. This is the case in which p approaches the
equilibrium smoothly without ever overshooting. Whatever the initial sign of the deviation x, it
remains of the same sign but goes to zero. When −2 < a < −1, 1 + a lies between -1 and 0.
Multiplying x by 1 + a will change its sign but reduce its magnitude. That corresponds to the
case where there is overshooting of the equilibrium, but the overshoot leaves the gene frequency
each time closer to the equilibrium than it was. The gene frequency oscillates, but with decreasing
amplitude, and ultimately converges to the equilibrium.

Finally, when a < −2, 1+a < −1 so that the deviation x changes sign each generation and grows
in amplitude. The overshoot is so great as to leave the population farther from the equilibrium
each time. It oscillates away from the equilibrium. Extrapolation of this behavior would lead to
an absurdity: the gene frequency would ultimately be greater than 1 or less than 0. This need
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Figure 2.7: Physical analogy to protected and unprotected polymorphisms, using balls
rolling on surfaces.

librium of gene frequency is a case in which the polymorphism is protected, this will not always be
the case with other, more complicated patterns of selection. Figure 2.7 shows a physical analogy to
illustrate this possibility. In the case of protected polymorphism the ball will always return to the
center, but when the polymorphism is unprotected, it may be locally stable, but cannot be globally
stable to sufficiently large perturbations in the right direction. There are two aspects of the physical
analogy which can be misleading. One is momentum, which has no analogue in biology. A ball
which rapidly rolls to the equilibrium will continue beyond it as a result of its momentum - the
gene frequency will not. The other misleading aspect of these pictures is the behavior at the two
walls. When a gene frequency reaches 0 or 1 it becomes stuck and cannot change further until the
other allele is reintroduced by mutation or by migration. A ball placed at one of the walls depicted
in the Figure simply rolls away if the local slope leads away downhill.

HISTORY. The equilibrium gene frequencies in an overdominant polymorphism were first
derived by Fisher (1922), and more detail on the dynamics in over- and underdominance was
provided by Haldane (1926b). Muller (1918) had previously pointed out the properties of balanced
lethal factors, when only the heterozygote can survive selection.

II.7 Selection and Fitness

This is a convenient point at which to undertake an examination of the effects of selection on
the average fitness of the population. We would like to know whether natural selection does, as
expected, increase the adaptedness of the population. In the scheme we have developed in this
chapter, the only available measure of the extent of adaptation is the mean fitness. It would be
nice if we could show that the mean absolute fitness of the population increased under natural
selection, but a moment’s reflection will show that this cannot be so. The absolute (Darwinian)
fitness of each genotype depends on the population density. Generally, it will fall as population
density rises. If the population reaches a stable size, at that point the mean absolute fitness must
be 1, so that in this sense natural selection will make no progress, since it will always result in a
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Balanced and unbalanced polymorphism

Variation: within species - Human hemoglobin



ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT

ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT

MVHLTPEEKSAVT (E is the single letter abbreviation for 

                                                glutamic acid)

MVHLTPVEKSAVT (V is the single letter abbreviation 

                                            for valine)

Glutamic acid is a hydrophilic amino acid. Valine is a 

hydrophobic amino acid.

Human variation at genetic code level (genotype) to 
variation in protein to variation in...



Variation: different “allelomorphs” or “alleles” 
(Bateson, 1908)

Variation in “phenotype” = ‘form that shows’



AA SS CC AS AC SC

Observed 25374 67 108 5482 1737 130

Expected 25616 307 75 4967 1769 165

Obs/Exp 0.99 0.22 1.45 1.10 0.98 0.79

Relative 

fitness
0.89 0.20 1.31 1 0.89 0.70

Analysis of Hb-a, HB-s, and HB-c data
(from Cavalli-Sforza, 1977)
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Figure 2.9: Contours of fitness plotted against allele frequencies in a three-hemoglobin
polymorphism. At any point, the frequency of each allele is proportional to the attitude
to the side opposite the corner labeled with that allele’s symbol. Minima (-), Maxima
(+) and saddle-points (*) of the fitness surface are indicated.

where all three alleles are present. There is an equilibrium there, as the appropriate linear equations
show, but it is not stable. In fact, if there is a stable equilibrium with one fewer allele (including
stability to introduction of the missing allele), the interior equilibrium must be unstable. This fact
follows from the identification of peaks of w̄ with stable equilibria, and from the quadratic nature
of w̄, though it will not be proven here. Since there is a stable equilibrium with only alleles A and
S, there cannot be a stable equilibrium with all three alleles.

Note that the simple plotting of w̄ over the triangle, as done in Figure 2.9, immediately shows the
locations of the two peaks, and shows that there is an interior equilibrium which is unstable, as it is
a saddle of the fitness surface. Such a plot of w̄ will always convey the full picture in multiple-allele
cases, and is by far the easiest and most accessible way of analyzing these situations. Of course,
the plot must be done to sufficient accuracy: both the saddle point and the A-S polymorphic
equilibrium would have been missed if only the contours 0.1 apart (the coarsely dashed curves)
were plotted.

The small size of the peak for the A-S polymorphism would seem to indicate that West African
populations are proceeding to fixation for allele C. This is not necessarily so, because these popu-
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= frequency of A (normal)
= frequency of S (sickle)



Does sex make you fitter?


