6.891: Computational Evolutionary Biology

R.C. Berwick & a cast of thousands Today: the forces of evolution

The a	lgebra of se I gene in 2	election differer	- J.B.S. nt forms	Haldane 5 (alleles	e, 1924)	
	genotype	AA	Aa	aa		
	frequency	P ²	2pq	q ²		
	relative fitness	W 11	W 12	W 22		
	after selection				— survivors	
$\overline{w} \equiv \text{mean fitness} \equiv p^2 w_{11} + 2p(1-p)w_{12} + (1-p)^2 w_{22}$						
$\overline{w}_1 \equiv \text{ mean fitness of A} \equiv p^2 w_{11} + p(1-p) w_{12}$						

Newton's F=ma for evolutionary systems Basic dynamical system map: compute p' from p

$$p' = \frac{A \text{ survivors}}{\text{all survivors}} = \frac{p^2 w_{11} + \frac{1}{2} \times 2p(1-p)w_{12}}{p^2 w_{11} + 2p(1-p)w_{12} + (1-p)^2 w_{11}}$$
$$p' = \frac{p(pw_{11} + p(1-p)w_{12})}{p^2 w_{11} + 2p(1-p)w_{12} + (1-p)^2 w_{11}} = p\frac{\overline{w}_1}{\overline{w}}$$
$$p' - p = \frac{p(1-p)\{w_{11}p + w_{12}(1-2p) - w_{22}(1-p)\}}{p^2 w_{11} + 2p(1-p)w_{12} + (1-p)^2 w_{11}}$$

Dynamics: Compute Δ p and also w vs. p gives the 'jet fuel' formula for gene frequency change under selection $p'-p = \frac{p\overline{w}_1}{\overline{w}} - \frac{p\overline{w}}{\overline{w}} \implies \Delta p = \frac{p(\overline{w}_1 - \overline{w})}{\overline{w}} \text{ with 2 alleles,}$ $\overline{w} = p\overline{w}_1 + (1-p)\overline{w}_2, \text{ so substituting:}$ $\Delta p = \frac{p(1-p)(\overline{w}_1 - \overline{w}_2)}{\overline{w}} \text{ and now substitute for } (\overline{w}_1 - \overline{w}_2) = \frac{d\overline{w}}{dp} =$ $\Delta p = \frac{p(1-p)}{\overline{w}} \frac{d\overline{w}}{dp} = \frac{p(1-p)}{\frac{d\ln(\overline{w})}{dp}}$

Mean fitness always increases...

$$\Delta \overline{w} = 2p(1-p)\{w_{11}p + w_{12}(1-2p) - w_{22}(1-p)\}^{2}$$
$$\times \{w_{11}p^{2} + (w_{12} + \frac{1}{2}w_{11} + \frac{1}{2}w_{22})p(1-p) + w_{22}(1-p)^{2}\}\overline{w}^{-2}$$

But...this is <u>not</u> always the same thing as globally maximizing fitness...

Haploid case (no Hardy-Weinberg sexual mixing)

Fitness ratios 1+*s* : 1 (for fitness A:a) *s*= *selection coefficient*

$$\frac{p_A^{(t)}}{p_a^{(t)}} = (1+s)^t \frac{p_A^{(0)}}{p_a^{(0)}},$$

Special cases of fitness - geometric ratios

$$\begin{array}{ccc} AA & Aa & aa \\ (1+s)^2 & 1+s & 1 \end{array}$$

$$\bar{w}_A = (1+s)^2 p + (1+s)(1-p)$$

$$= (1+s)[p(1+s)+1-p]$$

$$= (1+s)[1+sp],$$

$$\bar{w}_a = 1+sp,$$

Additive fitness ratios

 $\begin{array}{ccc} AA & Aa & aa \\ 1+2s & 1+s & 1 \end{array}$

No analytic solutions for p in terms of t!

Additive fitness ratios

$$1 + 2s : 1 + s : 1$$
$$\bar{w} = 1 + 2sp,$$
$$p' = \frac{p(1 + s + sp)}{1 + 2sp}.$$
$$\Delta p = \frac{sp(1 - p)}{1 + 2sp}.$$

Times required to change through various gene frequency ranges when s = 0.01.

		Favored Allele			
From	То	Dominant	Multiplicative	Recessive	
0.001	0.01	232.07	231.32	90,231.2	
0.01	0.1	249.89	240.99	9,239.79	
0.1	0.5	308.61	220.82	1,019.72	
0.5	0.9	1,019.72	220.82	308.61	
0.9	0.99	9,239.79	240.89	249.89	
0.99	0.999	$90,\!231.2$	231.32	232.07	

Stability Analysis

$$x' = p + \Delta p - p_e = p_e + x + \Delta p - p_e$$

$$= x + \Delta p \qquad \simeq x + ax \qquad = x(1+a)$$
Locally stable if:

$$-2 < \left[\frac{d(\Delta p)}{dp}\right]_{p = p_e} < 0,$$

Dynamical system analysis of 'adaptive topography'
or mean fitness vs. p
$$\overline{w} = p^2 [(w_{11} - w_{12}) + (w_{22} - w_{12})] - 2p(w_{11} - w_{12}) + w_{22}$$
$$w_{12} = \frac{w_{11} + w_{22}}{2}$$

Dynamical system analysis of 'adaptive topography'
or mean fitness vs. p - nondegenerate case
$$\overline{w} = p^2[(w_{11} - w_{12}) + (w_{22} - w_{12})] - 2p(w_{11} - w_{12}) + w_{22}$$

 $w_{12} \neq \frac{w_{11} + w_{22}}{2}$ so in this case, formula for \overline{w} is a parabola.
There are 4 further subcases, depending on the ordering of
the w_{ij}

$$\hat{p} = \frac{w_{22} - w_{12}}{(w_{11} - w_{12}) + (w_{22} - w_{12})}$$

Analysis of Hb-a, HB-s, and HB-c data (from Cavalli-Sforza, 1977)								
	AA	SS	сс	AS	AC	SC		
Observed	25374	67	108	5482	1737	130		
Expected	25616	307	75	4967	1769	165		
Obs/Exp	0.99	0.22	1.45	1.10	0.98	0.79		
Relative fitness	0.89	0.20	1.31	1	0.89	0.70		

Suppose just A, S alleles $\hat{p}_{S} = \frac{w_{22} - w_{12}}{(w_{11} - w_{12}) + (w_{22} - w_{12})} = \frac{0.2 - 1.0}{0.89 - 2.0 + 0.2} = 0.1209$ $\sum_{\substack{p_{A} = 0.8791 \\ \overline{w} = 0.90}}^{p_{A} = 0.8791}$ Suppose just a few C alleles introduced $w_{C} = p_{A}w_{AC} + p_{S}w_{SC} + p_{C}w_{CC}, \text{ when } p_{c} \approx 0,$ $w_{C} = p_{A}w_{AC} + p_{S}w_{SC} = 0.8670$ C cannot invade when rare, even though this yields global fitness!