
Design and Implementation of

the Feedback Systems Web Laboratory

by

Gerardo Viedma Núñez

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 27, 2005

Certified by. .
Dr. Kent H. Lundberg
Postdoctoral Lecturer

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Design and Implementation of

the Feedback Systems Web Laboratory

by

Gerardo Viedma Núñez

Submitted to the Department of Electrical Engineering and Computer Science
on January 27, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and implementation of a remote web-based laboratory
(WebLab) for MIT’s 6.302 Feedback Systems course. The WebLab system proposed
consists of a three-tiered architecture where client and server communicate with each
other via web services. On the front end, the user interacts with the system through
the Lab Client’s graphical user interface implemented as a Java applet. On the
back end, the Lab Server processes experiment requests from users and runs them at
the laboratory site. Once the experiment has been completed successfully, the Lab
Server sends the measured data to the Lab Client for display on the screen and further
manipulation by the user. Furthermore, the WebLab is designed to take advantage
of the iLab framework for provision of authentication and authorization services,
as well as common administrative tasks, such as user management and logging of
experimental results.

Thesis Supervisor: Dr. Kent H. Lundberg
Title: Postdoctoral Lecturer

3

4

Acknowledgments

I would like to express my deepest gratitude and appreciation to my supervisor,

Dr. Kent Lundberg. It never crossed my mind that a thesis project could evolve into

such a pleasurable and rewarding experience. Much have I learned over the past year,

and I am glad to admit that I enjoyed every moment of it. I believe Dr. Lundberg’s

enthusiasm, leadership and vision for the WebLab project had much to do with such

a successful outcome.

It was also a great pleasure working side by side with the 6.302 staff during the

deploy of the WebLab in the Fall of 2004. I am very grateful to all the 6.302 students

who helped test and evaluate the system. Their feedback has been indispensable in

enhancing the educational value of the WebLab for future generations of feedback

systems students.

I also want to thank the iLab team for their continuous support and great work on

the iLab architecture. Without their efforts, this thesis work would certainly not have

been possible. I am also much indebted to the Microelectronics WebLab team, and

James Hardison in particular, for providing much of the source code and expertise

that were leveraged in building our system. In addition, I am obliged to MIT and

the Department of Electrical Engineering and Computer Science, for helping support

my thesis work through their Research Assistantship and Departmental Fellowship

programs.

Last and most importantly, I would like to thank my parents whose boundless love

and patience have never failed to encourage me in pursuing my goals. The completion

of this thesis project is as much a fruit of their effort and perseverance as it is of my

own. My most heartfelt congratulations go to them.

5

A mis padres y mi hermana Gloria; soy quien soy gracias a vosotros.

6

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Related Work . 12

1.3 Overview of this Thesis . 13

2 The iLab Shared Architecture 15

2.1 Motivation . 15

2.2 The iLab Framework . 16

2.2.1 iLab Design Goals . 16

2.2.2 Experiment Types . 17

2.3 The Batched Experiment Architecture 18

2.3.1 The Case for Web Services . 20

2.3.2 The iLab Batched Experiment API 21

2.3.3 Outline of a Student Batched Experiment Session 22

3 The Feedback Systems WebLab 25

3.1 Architecture Overview . 25

3.2 Describing the Experiment Domain 26

3.2.1 Experiment Routine . 28

3.2.2 Lab Configuration . 31

3.2.3 Experiment Specification . 32

3.2.4 Experiment Result . 33

7

4 The Feedback Systems Lab Server 35

4.1 Architecture . 35

4.2 ASP.NET Web Services Architectural Overview 36

4.2.1 Security . 38

4.3 Database . 39

4.4 Experiment Engine . 41

4.4.1 Preparing the Experiment . 41

4.4.2 Running the Experiment . 42

5 The Feedback Systems Lab Client 47

5.1 Web Services . 49

5.2 Dynamic UI Components . 50

5.3 Functionality . 52

6 Field Trial for the Feedback Systems WebLab 55

6.1 Student Experience . 55

6.2 Statistics . 56

6.3 Student Response to the WebLab . 63

6.4 Lessons Learned . 64

7 Conclusion and Future Work 67

7.1 6.302 and the Feedback Systems WebLab 67

7.2 The Feedback Systems WebLab beyond 6.302 68

7.3 Future Prospects for the Feedback Systems WebLab 69

A XML Schema Definitions 71

A.1 Experiment Routine . 71

A.2 Lab Configuration . 73

A.3 Experiment Specification . 75

A.4 Experiment Result . 75

8

B Defining Experiments for the Feedback Systems WebLab 77

B.1 Experimental Setup . 77

B.2 Creating an Experiment for Execution 80

B.3 Obtaining the Results . 80

C Integrating the Feedack Systems WebLab into iLab 83

C.1 Registering the Lab Server . 83

C.1.1 Updating the Service Broker 84

C.1.2 Updating the Lab Server . 85

C.2 Registering the Lab Client . 86

C.2.1 Updating the Service Broker 86

C.2.2 Publishing the Lab Client . 87

C.3 Managing Users . 87

D Configuration Information for the Feedback Systems WebLab 89

D.1 Lab Server iLab Configuration . 89

D.2 Lab Client iLab Configuration . 90

E 6.302 Feedback Systems Fall 2004 iLab Assignment 91

F Fall 2004 6.302 iLab Survey 97

Bibliography 99

9

10

Chapter 1

Introduction

Remote laboratories became a reality with the advent of distributed systems that

could make use of computer networks to communicate. The Internet allows anyone

who satisfies some minimal requirements (e.g. a Java-enabled browser) to conduct an

experiment from anywhere and at any time. This development has provided oppor-

tunities to explore new teaching methodologies that make use of these technologies

to enhance science and engineering courses. An example of this is the current project

of building a web-accessible laboratory for MIT’s Electrical Engineering course 6.302

Feedback Systems.

1.1 Motivation

The Feedback Systems Web Laboratory [1] (henceforth referred to as WebLab) pro-

vides an effective means for students to conduct experiments from a variety of loca-

tions through a web browser. Using our remote web-accessible laboratory students

are able to conduct experiments at any time and any place that is convenient for

them. In addition to its flexibility from the student point of view, the WebLab also

helps alleviate the load on teaching assistants and professors. In a successful remote

laboratory, their physical presence in the lab will no longer be required while each

and every student completes their lab assignment.

Furthermore, a remote laboratory provides an excellent means to time-share ex-

11

pensive and scarce equipment. This consideration was one of the primary motivations

in building the Feedback Systems WebLab, for which the Dynamic Signal Analyzer

represents an expensive piece of lab equipment that is very difficult to share efficiently

among students in a conventional lab setting.

1.2 Related Work

There have been many approaches to the design of Internet-based remote laboratories

(henceforth referred to as weblabs) for control education. Early systems required

specialized platform-dependent software running at the client computer [2, 3, 4, 5].

Later approaches moved towards browser-enabled technologies for the client, including

Java applets [6], static and dynamic HTML pages [7], and CGI scripts [8]. HTML-

based solutions often result in thin clients with little processing abilities and rely

heavily on server-side technologies such as CGI that tightly couple client and server

development [9].

Most current designs employ Java applet technology for the client environment,

due to Java’s processing abilities and platform independence. Many of these systems

rely heavily on TCP/IP sockets for communication [10, 11]. Although an efficient

means for client to server communication, sockets require client developers to grapple

with a style of programming radically different from the object-oriented paradigms

they are accustomed to.

Instead, the iLab architecture [12] provides a common framework for lab develop-

ment and deployment. This approach differs from sockets-based solutions by hiding

many of the details involved in network communication from the developer. This

goal is achieved by using web-service technology, which provides an object-oriented

interface to client/server communication based on traditional method calls that take

place over HTTP.

In addition, the iLab architecture limits the amount of implementation work that

needs to be done by weblab developers and administrators. Previous remote labora-

tory designs have wrestled with the provision of administrative services not specific to

12

the laboratory. In doing so, it has been the tendency to include this kind of function-

ality at the server end along with the laboratory-specific services [6, 13]. In contrast,

the iLab architecture decouples laboratory-specific operations related to running ex-

periments from the more generic administrative tasks of user authentication, user

authorization, group management, and results-storage functionality.

The iLab architecture naturally extends the client/server weblab topology by in-

corporating an additional third tier: the Service Broker. The Service Broker handles

all administrative tasks, thus freeing the server machine (and the weblab developers)

from having to implement custom administrative solutions for each new weblab. Our

approach to building a linear-systems web-based laboratory that integrates with the

iLab framework is summarized in [14].

Finally, MIT’s iLab project has already produced a number of functional labs for

a variety of different courses among a diversity of disciplines. It is a goal of this

project to contribute to the iLab initiative, by making use of much of the existent

infrastructure and know-how that has already been put in place through the creation

of other iLab-based weblabs. In particular, this project is indebted to the developers of

the 6.012 Microelectronics Devices and Circuits WebLab [15], who gratefully provided

much of the framework and tools that were leveraged in the implementation of the

Feedback Systems WebLab.

1.3 Overview of this Thesis

The current chapter provides an introduction and motivation for this research, and

discusses some of the previous work done in the area. Chapter 2 describes the iLab

framework upon which our WebLab is based. Details for our particular WebLab im-

plementation for the Feedback Systems course are given in Chapter 3. Chapters 4

and 5 provide a detailed account of the Lab Server and Lab Client implementations

respectively. Finally, a discussion of the student experience and the lessons learned

from the WebLab’s deployment in a class setting is provided in Chapter 6, followed by

some concluding remarks and suggestions for future work in Chapter 7. The integra-

13

tion of our WebLab into the overall iLab framework is documented in Appendix C.

I have applied the following typographical conventions in the remaining pages.

Web service methods, SQL procedures and namespaces are provided in true-type.

SQL tables and software classes appear in sans-serif, variables and parameters are

slanted, and UI/menu options and new terms are introduced using italics.

14

Chapter 2

The iLab Shared Architecture

2.1 Motivation

The iLab project [16] developed as part of the iCampus initiative [17] to promote

online laboratories at MIT. Even though there is a great educational value in hands-on

laboratory experiences, conventional laboratories suffer from a number of important

drawbacks. First, they tend to be costly and involve complex logistics [18]. Expensive

equipment needs to be time-shared and scheduled for use, and requires lab space, lab

staffing and training, as well as involving issues of safety. Secondly, conventional

labs do not scale very well, making it exceedingly difficult to share equipment as the

number of users increases. They also impose severe limitations on the geographical

location of potential users, who must necessarily be physically present in lab in order

to run experiments.

Online labs share many of the advantages of conventional labs in delivering the

educational benefits of hands-on experimentation, while overcoming their biggest lim-

itations. Moreover, these labs are not limited to providing simulations nor running

“canned experiments” (although this functionality can still be easily included). In-

stead, online labs provide a virtual interface to real laboratory hardware that can now

be accessed over the Internet from anywhere and at any time [19].

Online labs are also unique from a pedagogical perspective. For instance, they

allow laboratory experiments to be introduced at the most opportune moment in

15

the curriculum, and are very flexible, allowing students to perform experiments in

pleasant environments at the times of their choice. Moreover, by providing simple

and more intuitive interfaces to laboratory equipment, they can help minimize student

frustrations with hardware that can often detract from the educational effectiveness

of traditional lab work. In addition, online labs greatly facilitate the collection and

manipulation of experiment data, which students can now easily export to a number

of different formats and applications for analysis, comparison and visualization [6].

2.2 The iLab Framework

2.2.1 iLab Design Goals

The iLab framework was designed to allow the usage of online labs to scale to a

large number of users geographically dispersed throughout the world. Its goal is

also to decouple the generic administrative operations from those involved in the

implementation of particular labs. Consequently, the iLab framework provides a set of

generic services relating to user authentication and authorization, group management,

experiment specification and result storage, as well as lab access scheduling. In this

way, lab operators need not develop custom solutions for individual user management

and data storage, but can instead focus on lab-specific development.

Scalability of the system is also ensured by delegating the implementation of

administrative and user-management policies to each of the universities or research

centers participating in it. The delegation of control and authentication policies allows

and encourages universities with diverse network infrastructures to interoperate and

share access to lab equipment.

The long term vision of the iLab project is for the educational content of online labs

to be broadly shared around the globe, enhancing science and engineering education

by multiplying the lab experiences students will ultimately have access to [18].

16

2.2.2 Experiment Types

The iLab framework defines three broad categories of online experiments [12]:

1. Batched experiments : those in which the entire course of the experiment can be

specified before the experiment begins. The current Feedback Systems WebLab

provides an example, where students submit the set of experimental parameters

that are needed to completely characterize the experiment task.

2. Interactive experiments: those in which the user can monitor and dynamically

modify one or more inputs to the experiment during its execution.

3. Sensor experiments: those in which users monitor or analyze real-time data

streams without influencing the phenomena being measured.

The very different characteristics of the above types of experiments result in a

variety of requirements for the shared architecture. In a batched experiment, users

completely specify their experiment before submitting it for execution. As a result,

users need not be online during experiment execution, but can retrieve their results

at a later time. For this reason, it is appropriate to satisfy experiment requests in a

manner that maximizes the efficient use of the Lab Server rather than convenience

for the user.

On the other hand, interactive experiments require that the user be online during

execution in order to adaptively control and alter the experiment inputs. In this

scenario, it becomes necessary to schedule experiments that take longer than a few

minutes to execute. Scheduling thus prevents users from having to wait for long

periods of time before the experiment apparatus becomes available.

Finally, sensor experiments provide no mechanism to directly control an experi-

ment. Moreover, these experiments differ fundamentally from batched experiments

and interactive experiments in which users’ experiment requests are executed sequen-

tially. Instead, they allow users to subscribe to a number of different data streams

providing different resolutions or transformations of the base data. Consequently, sen-

sor experiments offer the ability to multicast the same data to a multitude of users at

17

Internet

Database

Service
Broker

Internet/
Intranet

Lab Client

Lab Client

Lab-Side Campus

Student-Side Campus

Lab Devices

Lab Server

Figure 2-1: Architectural overview of the three-tiered iLab system. The Service Broker
handles all administrative tasks, thus freeing the Lab Server (and its developers) from
having to implement custom administrative solutions for each different weblab. The
Service Broker architecture also simplifies the sharing of iLabs between universities, by
alleviating the lab-side (host) university from administering guest users. The host uni-
versity can grant access to the student-side (guest) university’s Service Broker, and the
guest university can then administrate its own users.

once. They can also be used to generate archives of data gathered over extended pe-

riods of time. These data can then be employed at a later time for statistical analyses

and searches of events of interest.

Given the relative novelty of the iLab project, only the batched experiment archi-

tecture has been tested and fully deployed at the current time. The interactive and

sensor experiment architectures are still undergoing heavy development, and proto-

types should become available in 2005 and 2006 respectively [12].

2.3 The Batched Experiment Architecture

The iLab framework proposes a three-tiered topology for batched experiments based

on web services, as show in Figure 2-1:

1. The first tier consists of the Lab Client application that either runs as an

applet on the user’s browser, or alternatively as a downloaded application on

the user’s workstation.

18

2. The middle tier provides the shared common services by means of a Service

Broker. The Lab Client communicates solely with the Service Broker, which

forwards the requests to the final third tier. In the most common scenario,

the Service Broker resides in the client side of the network, on a server at the

student’s institution. However, the architecture still allows for the Service Bro-

ker and Lab Client to reside on different networks, for example, when granting

accounts for users at other collaborating institutions.

3. The third and last tier is composed of the Lab Server, which usually resides

at a specified laboratory site on campus. The Lab Server’s task is to execute

the experiments specified by users, notifying the Service Broker when their

experiment has been completed and results are available to be retrieved.

In this framework, the Service Broker consists of completely lab-independent

generic code, and knows nothing about the domain dependent nature of the experi-

ments. On the other hand, the Lab Client and Lab Server constitute lab-dependent

tiers that must understand and speak a common protocol for describing the experi-

ment universe (e.g. when specifying experiment parameters and results). Using this

protocol, experiment requests and results are forwarded from Lab Client to Lab Server

as opaque objects through the Service Broker. However, the Service Broker does not

understand the contents of these opaque objects beyond the metadata description of

experiment requests, such as Lab Server IDs, etc.

Furthermore, individual students are also abstracted away from the Lab Server,

which does not know on which student’s behalf it is executing a given experiment.

Instead, the Service Broker authenticates and authorizes students to contact a par-

ticular Lab Server, and then assigns them to an effective group when submitting an

experiment specification on their behalf at the Lab Server. This scheme enables lab

implementors to grant different levels of access to different effective groups, while

delegating administrative decisions regarding group membership and management to

the Service Broker. It also maintains the Service Broker as the single point of contact

to the Lab Server, since students never need to contact or even be directly aware of

19

the location of the Lab Server.

2.3.1 The Case for Web Services

The choice of network technologies on which to build the iLab shared architecture has

a great impact on the capabilities of the resulting distributed application framework.

The iLab shared architecture favored the use of web services based on its design

requirements emphasizing interoperability, software reuse, lab discovery and licensing

possibilities [12].

First of all, it is crucial that the architecture support lab-side services as well

as client-side services (including authentication and authorization, and experiment

data storage). These two services will often run on separate networks, and possibly

under different hardware and software platforms. Furthermore, the iLab architecture

must be able to transparently support lab-side institutions which enforce different

networking policies (firewalls and network services) from client-side institutions. Web

services built on top of the SOAP [20] standard provide a platform and language-

independent protocol for exchanging information in a decentralized and distributed

environment. Moreover, SOAP web services are based on XML [21] and are adaptable

to the Internet, since all communication takes place over the HTTP protocol. These

advantages make web services a transparent and interoperable network technology

ideal for the integration of iLab’s distributed online laboratory framework.

Often, labs will possess a preexisting code-base that was independently developed

by lab experiment owners and course staff. Web services makes it possible to leverage

that previous development effort by reusing such legacy code when deploying these

labs as iLab-enabled weblabs. In addition, the loose coupling of web services allows

lab developers to more easily integrate vendor specific modules (e.g. National Instru-

ments’ LabView [22]) into their weblabs, thus potentially reducing total development

time.

Looking at the future of the iLab project, web services technologies herald enor-

mous possibilities in publishing and discovery methods for online services. Employ-

ing web services WSDL [23] and UDDI [24] technology, weblab owners will be able

20

to publish their online labs services to the entire world, fostering the cooperation

between educational institutions as more online labs become available. Moreover,

WSDL-based negotiation will provide the possibility of matching Internet accessible

labs with high-end visualization and data analysis tools licensed at the student-side

institutions.

2.3.2 The iLab Batched Experiment API

In order for iLab-enabled weblabs to be truly distributed, the different layers must ad-

here to the set of standardized operations stipulated in the iLab API. These operations

are implemented over web services and the SOAP protocol for message exchange.

The iLab shared architecture defines two sets of web service methods composing

the iLab API: service calls from Lab Client to Service Broker [25], and service calls

from Service Broker to Lab Server [26].

In fact, the bulk of the iLab API consists of pass-through methods, whose function

is simply for the Lab Client to call a corresponding method from the Lab Server API.

We summarize the most important ones here:

• GetLabStatus: checks on the status of the Lab Server.

• GetEffectiveQueueLength: checks on the effective queue length of the Lab

Server.

• GetLabInfo: gets general information about a Lab Server.

• GetLabConfiguration: gets the lab configuration of a Lab Server.

• Validate: checks whether an experiment specification would be accepted if

submitted for execution.

• Submit: submits an experiment specification to the Lab Server for execution.

• Cancel: cancels a previously submitted experiment.

21

• GetExperimentStatus: checks on the status of a previously submitted exper-

iment.

• RetrieveResult: retrieves the results from a previously submitted experiment.

In addition, the Service Broker publishes the Notify() web service method, which

may be called by the Lab Server to announce that an experiment has been completed

successfully and its results are ready to be retrieved.

2.3.3 Outline of a Student Batched Experiment Session

The following walk-through of a student experiment session illustrates the main in-

teractions and web service calls between Service Broker, Lab Server, and Lab Client

that take place during a batched experiment run [12].

1. First, the student must log on to the Service Broker through an active server

page, by supplying a user name and password for authentication.

2. The Service Broker responds by displaying a list of possible user groups for

which the student is registered. Upon selecting one, the Service Broker displays

a list of the available Lab Clients for the selected group.

3. Upon selection of a Lab Client, the corresponding Java applet loads on the

student’s browser.

4. Using the Lab Client’s user interface, the student edits the description of the

experiment to be run at the laboratory site. Once complete, the student directs

the Lab Client to invoke the web service Submit() method on the Service Bro-

ker. Submit() takes a text encoded version of the experiment specification as

an argument, which the Service Broker is not expected to understand.

5. The Service Broker then stores a copy of the experiment specification and for-

wards the Submit() call on to the Lab Server.

22

6. At this point, the Lab Server receives the experiment specification and validates

it for correctness. If legal, the Lab Server queues the experiment for execution.

It then returns a submission report that includes an error message in the case

of an invalid specification.

7. The Service Broker forwards the submission report to the Lab Client, along with

an experiment ID that is now used by all parties to identify the experiment.

8. Upon successful completion of the experiment, the Lab Server calls the Notify()

web service method on the Service Broker to indicate that the experimental re-

sults are now available to be retrieved.

9. The Service Broker then requests the results from the Lab Server by means of

the RetrieveResult() web service call.

10. The Lab Server returns the experimental results and any error messages to the

Service Broker, which stores them but is unable to interpret them.

11. Finally, the Lab Client can request the cached results from the Service Broker

by calling the RetrieveResult() web service. The Service Broker then returns

the results and any error messages, which the Lab Client is now able to interpret

and display to the student.

23

24

Chapter 3

The Feedback Systems WebLab

This chapter describes the implementation strategy for the Feedback Systems Web-

Lab. First, the system architecture and its main components are briefly introduced.

We then define a common syntax and semantics for describing experiments and their

results between Lab Client and Lab Server.

3.1 Architecture Overview

The experiments composing the Feedback Systems WebLab are entirely specified by

the user before the experiment begins. Our WebLab thus falls into the batched ex-

periment category. Consequently, the architecture of the Feedback Systems WebLab

is based on the three-tiered batched experiment architecture described in Section 2.3.

The iLab architecture for batched experiments suggests a distributed system of

three layers for building the WebLab. These three tiers communicate with each other

via SOAP messages exchanged through web services, as shown in Figure 3-1. The

first tier is made up of the Lab Client, which runs on the user’s machine as a Java

applet that can be loaded via a Java-enabled web browser. The Lab Client is the

only component in the system that is visible to the end user.

The middle tier consists of a trusted intermediary, known as the Service Broker,

which forwards requests from the Lab Client to the Lab Server for execution. The

main roles of the Service Broker are to authenticate users and grant them appropriate

25

permissions when forwarding their requests for experiments. The Service Broker

also provides additional administrative services, such as group management, and the

ability to temporarily store experiment requests from the Lab Client, and experiment

results from the Lab Server.

Finally, the Lab Server constitutes the third tier in the architecture. Its task is

to receive requests from the Lab Client via the Service Broker, and to reply to these

requests also via the Service Broker intermediary. Usually, the Lab Client requests an

experiment to run with a particular set of experimental parameters. In this case, the

Lab Server communicates with the laboratory equipment, runs the experiment on the

system under test, and finally replies with the experimental results upon successful

completion of the experiment.

A detailed account of the Feedback Systems Lab Server implementation strategy

is provided in Chapter 4, while Chapter 5 explains the design of our Lab Client.

Both the Lab Server and Lab Client described in this thesis build upon the Feedback

Systems WebLab prototype described in [27].

3.2 Describing the Experiment Domain

The iLab framework stipulates three different specifications for describing the experi-

ment universe. The content of these specifications is unique to the Feedback Systems

WebLab, and provides a common understanding of the experiment world between

Lab Client and Lab Server. In addition, the Feedback Systems WebLab was designed

in such a way that these specifications may reside anywhere on the World Wide Web.

As a result, the experiment can be modified remotely by anyone with the appropriate

permissions (for example, the appropriate teaching assistants and professors).

The three specifications defined by the iLab framework are the Lab Configuration,

the Experiment Specification and the Experiment Result. Moreover, the Feedback

Systems WebLab introduces one additional specification: the Experiment Routine. In

order to facilitate interoperability and the transfer of information across the Web, in-

stances of these specifications are encoded using the syntax of the Extensible Markup

26

Figure 3-1: The Feedback Systems WebLab Architecture. The three-tiered architecture
for the Feedback Systems Weblab consists of the Lab Client, the Service Broker, and the
Lab Server. The Lab Client runs as a Java applet on the client’s computer. The Service
Broker provides generic weblab services for a variety of iLabs. Finally, the Lab Server
communicates with the HP 3562A dynamic signal analyzer to set up frequency response
measurements on the system under test. It can also set various command signals at the
system under test via the LabJackTM DAQ board. All communication between tiers
takes place using SOAP web service calls over HTTP.

Language (XML). XML also provides a useful way to store structured information and

encapsulate it, making it easy for different computing systems to intercommunicate,

as described in [21].

While actual instances of these specifications are encoded in XML, the actual

structure of the specifications is defined by a corresponding XML schema written in

the XML Schema language [28]. The XML schema thus defines the building blocks,

consisting of elements and attributes and their underlying data types, that make up

the specifications. An instance of a specification, however, contains the actual values

for these elements and attributes, and must conform to the structure defined in the

corresponding XML schema.

XML Schemas hold a number of advantages [29] over their predecessor DTDs [30].

For example, they are more easily maintained, support data types and name spaces,

are extensible and modular, and are written entirely in XML. For these reasons, we

27

decided to convert our original specifications for the WebLab from the original DTD

definitions to ones using XML Schema.

3.2.1 Experiment Routine

The first of the specifications defined for the Feedback Systems WebLab is the Ex-

periment Routine. It must be noted that this specification is not defined by the iLab

framework, and thus plays no role within the Lab Server-to-Service Broker or Service

Broker-to-Lab Client APIs outlined in Section 2.3.2.

Why introduce yet another specification?

The reason why we decided to introduce this additional specification was to have

a single file through which to completely characterize any given experiment. As

described in Section 3.2.2, the Lab Configuration also serves the purpose of describing

experiment configurations. However, this specification is received at the Lab Client

and should thus be limited to client-specific information regarding the experiment.

On the other hand, we would also like to include information regarding other

experimental parameters necessary for the Lab Server to run the experiment on the

lab hardware. Such additional information does not need to and in fact should not be

made available to clients via the Lab Configuration. The Feedback Systems WebLab

thus introduces the notion of the Experiment Routine, containing both Lab Client

and Lab Server-specific information regarding an experiment, all encapsulated in a

single file.

Moreover, for convenience and so that only one file need be edited by course staff

and system administrators, the Lab Configuration is dynamically generated from the

Experiment Routine at the Lab Server. In this way, Lab Client-specific information

can be safely handed to clients through the iLab API, while allowing the Lab Server-

specific experimental parameters to be hidden away from clients that need not or

should not be made aware of it.

28

Experiment Routine
+lab: String
+specversion: Decimal
+description: String
+schematic: Schematic
+offlineData: Offline Data
+initialization: Initialization
+measurement: Measurement
+constraint: Constraint

Schematic
+simpleImageURL: anyURI
+detailedImageURL: anyURI

Offline Data
+name: String
+label: String
+resultsURL: anyURI

Measurement
+function: Function

Function
+name: String
+option: Option

Option
+name: Name
+units: Units
+userEditable: Boolean
+label: String
+defaultValue: Decimal
+minValue: Decimal
+maxValue: Decimal

+

+

*

+

!

!

Constraint
+type: String
+variable1: String
+variable2: String

*

Figure 3-2: An object model representation of the Experiment Routine. The Ex-
periment Routine encapsulates a complete experiment setup and measurement routine
at the lab hardware. Thus, it defines the measurement parameters characterizing the
experiment to be performed at the Lab Server. In addition, it provides links to the
experiment’s schematic diagram, and other generic lab-specific information such as the
lab name and its description. Lab administrators also have the ability to provide exper-
imental data for users to download via offline data, and can specify simple constraints
between measurement parameters.

Details of the Experiment Routine

As its name implies, the Experiment Routine is tightly bound to a particular exper-

iment, and describes the set of experimental operations that need to be performed

at execution time. The set of operations supported by WebLab experiments is di-

rectly determined by the lab hardware employed at the Lab Server. Currently, the

WebLab incorporates an HP 3562A digital signal analyzer in order to obtain the fre-

quency response measurements on the system under test (SUT). In addition, the Lab

Server can set input voltages to the SUT by communicating with a digital acquisition

board over the USB port. Actual details of our lab hardware setup are provided in

Chapter 4.

Reflecting the hardware capabilities, the Experiment Routine stipulates a set of

initialization operations, defined by a measurement type and a measurement mode.

29

The measurement type defines the kind of measurement operation to be performed by

the dynamic signal analyzer, and can be one of frequency response or time response.

Similarly, the measurement mode describes the type of response to be measured by the

signal analyzer from linear response, log response, and swept sine. These experimental

settings constitute the bulk of Lab Server-specific experiment information that is

hidden from clients.

In addition, the Experiment Routine also specifies a set of measurements that are

used to fine-tune the experiment to be run at the lab hardware. These measurements

are divided into one of the following different functions:

• Gain: this function contains options to set command signals on the system

under test.

• Source: sets the option for the source level at the signal analyzer.

• Frequency: this function contains the options to set the start and stop fre-

quency, as well as the sweep rate for the measurement on the signal analyzer.

Moreover, each of these options can be made visible to clients via the Lab Con-

figuration by setting the userEditable attribute to true. Any other options that are

not set to true will be hidden from clients by default.

Finally, the Experiment Routine also contains generic information regarding the

experiment, such as the lab’s internal name, a descriptive label for the experiment,

and URL pointers to simple and detailed experiment schematic diagrams. The Exper-

iment Routine may also contain information regarding offline data, used to provide

access to experimental data that have been previously collected and are available for

clients to download at their convenience.

Offline data are characterized by generic experiment information, including a

unique lab name, a descriptive label, as well as a URL pointer to the Web location

where the experimental results can be retrieved. This generic information describing

experiments is also part of the Lab Client-specific data that makes up the Lab Config-

uration, and described in more detail in Section 3.2.2. An object model representation

of the Experiment Routine is given in Figure 3-2.

30

Figure 3-3: Sequence of steps involved in the dynamic generation of the Lab Configura-
tion from the Experiment Routine. First, the Lab Client requests the Lab Configuration
from the Lab Server via a GetLabConfiguration web service call to the Service Broker.
The Lab Server’s web service logic then retrieves the URL for the default Lab Routine
from the Lab Server database, and fetches its contents from the web locker. Lastly,
it generates the Lab Configuration from the Experiment Routine data as outlined in
Figure 3-4, and forwards it to the Lab Client via the Service Broker.

3.2.2 Lab Configuration

As mentioned in Section 3.2.1, the Lab Configuration is dynamically generated at

the Lab Server based on the Experiment Routine. Figure 3-3 depicts the complete

sequence of steps involved in loading the Lab Configuration at the Lab Client, while

Figure 3-4 demonstrates how the Lab Configuration is populated from the Experiment

Routine at runtime by the Lab Server.

The Lab Configuration consists of all the Lab Client-specific information regard-

ing an experiment, and contains generic configuration information for the experiment

requested by the Lab Client. More specifically, it lists the set of inputs to the experi-

ment that can be modified at the Lab Client, along with their default values and valid

ranges. In addition, it provides some generic information concerning the experiment,

such as a text description, and URL pointers to the experiment’s simple and detailed

schematic diagrams. As with the Experiment Routine, the Lab Configuration may

also contain information regarding offline data. Figure 3-5 provides an object model

31

Figure 3-4: Dynamic generation of the Lab Configuration from the Experiment Rou-
tine. The Lab Configuration is not a stand-alone specification but is instead completely
derived from the Experiment Routine by the Lab Server. It consists of generic lab
information such as the lab description, the schematic diagram, offline data and mea-
surement constraints. In addition, it contains all those measurement options marked as
userEditable in the Experiment Routine.

representation of the Lab Configuration.

3.2.3 Experiment Specification

The Experiment Specification is prepared by the user at the Lab Client end, and rep-

resents the parameter values constituting the user’s particular run of the experiment.

An instance of the Experiment Specification contains a collection of inputs consisting

of the parameter name and units, along with the value for the parameter provided by

the user. An object model representation of the Experiment Specification is given in

Figure 3-6.

32

Lab Configuration
+lab: String
+specversion: Decimal
+description: String
+schematic: Schematic
+offlineData: Offline Data
+input: Input
+constraint: Constraint

Schematic
+simpleImageURL: anyURI
+detailedImageURL: anyURI

Offline Data
+name: String
+label: String
+resultsURL: anyURI

Input
+name: String
+units: String
+label: String
+defaultValue: Decimal
+minValue: Decimal
+maxValueimal: Decimal

*

Constraint
+type: String
+variable1: String
+variable2: String

*

+

!

Figure 3-5: An object model representation of the Lab Configuration. The Lab Con-
figuration encapsulates all Lab Client-specific information regarding an experiment. It
consists of generic lab information such as the lab description, the schematic diagram,
offline data and measurement constraints. In addition, it contains all those measurement
options that lab administrators have defined to be user-settable by the Lab Client.

Experiment Specification
+lab: String
+specversion: Decimal
+input: Input

Input
+name: String
+units: String
+value: Decimal

*

Figure 3-6: An object model representation of the Experiment Specification. The
Experiment Specification consists of a number of input parameters making up a user’s
experiment request to be run at the lab hardware. This specification is usually generated
at the client side after users submit their experiments from the Lab Client.

3.2.4 Experiment Result

Once the experiment has completed successfully, the Lab Server produces a list of data

vectors containing the measured results and encapsulates them in the Experiment

Result. Each data vector is characterized by its result type (usually one of frequency,

phase or magnitude), the units for its data values, and the list of comma-separated

numeric values measured by the experiment hardware. Figure 3-7 provides an object

model representation of the Experiment Result.

33

Experiment Result
+lab: String
+specversion: Decimal
+datavector: Datavector

Datavector
+name: String
+units: String

+

Figure 3-7: An object model representation of the Experiment Result. The Experiment
Result encapsulates the experimental data retrieved after successfully completing an
experiment request at the Lab Server. It consists of a list of data vectors, usually of
types frequency, gain and magnitude. Each of these data vectors is further characterized
by its name and units.

34

Chapter 4

The Feedback Systems Lab Server

4.1 Architecture

The Lab Server implements the iLab framework’s Lab Server API using web services

under Microsoft’s ASP .NET. The web service is implemented in the Visual Basic

.NET language on a web server running Internet Information Services (IIS), and can

be invoked through a fixed URL reserved for the Feedback Systems WebLab. The Lab

Server also runs an SQL database under Microsoft SQL Server 2000. This database is

accessed from the web services module for authentication and authorization, logging

calls to the web service, retrieval of hardware information relating to the experi-

ment, etc. In addition, the database is used to enqueue experiment requests and to

temporarily store any experimental results that were processed at the Lab Server.

The Lab Server also runs an experiment engine on its own thread, separate from

the web services module. The experiment engine periodically checks the queue of

submitted experiments, and retrieves the job with highest priority or the first one

in the queue. It then processes the experiment specification provided by the user at

the Lab Client, and sets up the hardware appropriately. This step is accomplished

by communicating with an HP 3562A digital signal analyzer over the GPIB bus, and

whose probes are attached to the system under test. Moreover, our current setup

also makes use of a 20 output data acquisition and control (DAQ) board allowing

users to set inputs to the system under test [31]. The DAQ board inputs are set

35

HTTP Lab Server

SQL Server

IIS Server

running

Web Services

Experiment

Engine

HP 3562A

Dynamic

Signal Analyzer

Internet

LabJack DAQ Board System Under Test

USB

GPIB

USB

LabJack

DLL

Agilent

IO DLLsUSB

ASPNET

User

Figure 4-1: Lab Server architecture overview. The Lab Server is composed of three main
modules running concurrently. First, the ASP.NET worker process listens for incoming
web service method calls and dispatches them to the appropriate class and method. Sec-
ond, the Lab Server maintains an SQL database storing experiment configurations and
requests, user management and lab resource allocation information. Finally, the Exper-
iment Engine executes any pending experiments on the lab hardware. It communicates
with the HP 3562A dynamic signal analyzer to set up frequency response measurements,
and can also issue various command signals to the system under test via the LabJack
DAQ board for further experiment customization.

by the experiment engine, which makes calls to a dynamic link library providing

communication with the DAQ board over the USB interface. Figure 4-1 provides a

diagrammatic representation of the main Lab Server components.

4.2 ASP.NET Web Services Architectural Overview

The current section provides a brief introduction to the internals of ASP.NET, the

web service implementation chosen for our Lab Server.

Like all web services implemented in ASP.NET, our Lab Server web service is

accessible over the HTTP transport protocol [32]. When an incoming HTTP message

reaches port 80, Internet Information Server (IIS) maps web services asmx extensions

36

to Aspnet isapi.dll by default [33]. As a result, web service HTTP requests can be

forwarded to a separate worker process named Aspnet wp.exe, hosting the common

language runtime and the .NET HTTP pipeline.

When a message enters the .NET HTTP pipeline requesting an asmx file, the

pipeline calls the WebServiceHandlerFactory class to instantiate a new WebServiceHandler

object to process the request. The WebServiceHandler object then opens the physical

asmx file to determine the name of the class that contains the web methods composing

the web service.

Moreover, the ASP.NET web services model assumes stateless service architecture,

and therefore does not inherently correlate multiple calls from the same user. In fact,

each time a client invokes an ASP.NET web service, a new object is created to service

the request. This object is then destroyed after the method call completes.

Once the asmx handler is called by the .NET HTTP pipeline, it can begin to take

care of the XML, XSD, and SOAP processing. The asmx handler carries out the tasks

of message dispatching and of mapping XML to objects. In message dispatching, the

asmx handler first resolves the referenced .NET class by looking at the WebService

declaration found in the asmx file. It then reads the SOAP-encoded information

in the incoming HTTP message to determine exactly which method to call in the

referenced class. Through .NET reflection, it uses the value of the SOAPAction

header to determine how to dispatch the message to the corresponding web method.

Before it can actually invoke the method, however, it needs to map the incoming

XML into .NET objects.

The asmx handler maps XML to .NET objects by inspecting the class via reflection

in order to determine how to process the incoming XML message. It is the job of

the XmlSerializer class to perform the automatic mapping between XML and .NET

objects in the System.Xml.Serialization namespace, as shown in in Figure 4-2. At

this point, the web method can be called and its results serialized back into an XML

SOAP response by XmlSerializer.

37

Class

Objects

Schema
Type

XML
Instances

Figure 4-2: Mapping XML to .NET objects [33]. Before the asmx handler can actually
invoke the method it needs to map the incoming XML into .NET objects. It is the job
of the XmlSerializer class to perform the automatic mapping between XML and .NET
objects in the System.Xml.Serialization namespace.

4.2.1 Security

Since ASP.NET is based on HTTP, it becomes possible to leverage the security fea-

tures available in IIS to provide strong support for standard HTTP authentication

schemes. More specifically, the Feedback Systems Lab Server makes use of IP filter-

ing to deny access to the WebLab service from all hosts except the trusted Service

Broker. In addition, all connections between Lab Server and Service Broker can be

further secured using the Secure Sockets Layer (SSL) protocol. As a result, any data

exchanged between these two hosts does not travel as cleartext but instead is always

encrypted prior to being sent over the wire.

Beyond the lab-specific security considerations outlined above, the iLab framework

also provides a simple mechanism based on SOAP headers for authentication. When

the Lab Server becomes registered at the Service Broker, the latter assigns it a passkey

that is bound to that Lab Server’s unique ID (see Section C.1). Similarly, when the

Lab Server registers the Service Broker, it too assigns the latter a passkey bound to

the Service Broker’s unique ID. From this point on, all communication between Lab

Server and Service Broker includes a SOAP header parameter containing the passkey

for the corresponding host. This mechanism, when used along with SSL to encrypt the

payload contents, ensures that only registered hosts are able to successfully execute

web service methods on either Lab Server or Service Broker.

38

4.3 Database

In addition to Microsoft’s IIS, the Feedback Systems Lab Server runs SQL Server

2000 for experiment data and configuration management. The SQL server can be

accessed by both the web services module and the experiment engine at any given

time. It consists of SQL tables used to encapsulate Service Broker and Lab Server

configurations, experiment records, and group management, as well as of a number

of procedures used to manipulate them.

For instance, the LSSystemConfig table stores laboratory hardware configuration

data, including the bus address for the signal analyzer and its internal VISA name.

It also encapsulates all Lab Server specific information, such as the Lab Server’s

unique ID and the default experiment routine that it should run. In addition, it

contains a boolean flag exp eng is active which is automatically set to true whenever

the experiment engine is running, but which is set to false otherwise. This mechanism

allows the Lab Server to gracefully reject experiment requests at those times when

the experiment engine is not running.

Similarly, the Brokers table is used to store data pertaining to Service Brokers

registered at the Lab Server. Therefore, it contains information such as the Service

Broker’s ID, the Service Broker and Lab Server authentication passkeys, and the

URL for the Service Broker-to-Lab Server web service interface. These parameters

and their use are described in further detail in Section C.1.2.

Experiment routines are also conveniently abstracted in the SQL database, where

they are stored in the LabRoutines table. Each experiment routine is uniquely iden-

tified by a lab name, and consists of a pointer to the routine’s URL and an optional

description. This scheme makes it very simple for WebLab administrators to define

and support a variety of experiments. Different experimental setups can be written

at any time, and registered at the LabRoutines table. It then becomes trivial to up-

date the currently running experiment, by simply updating the default experiment

routine reference to the new routine in the LSSystemConfig table described above. In

the case of the 6.302 WebLab, these changes can be easily achieved through a set of

39

administrative GUI applications that interface to the underlying Lab Server database.

Group management is also managed through the database. Groups are character-

ized by a unique group id, the name of the corresponding Service Broker group, and

the respective Service Broker ID. In addition, a class id is used to manage class-based

resource permissions (through the ClassToResourceMapping table) and to implement

a simple prioritization scheme.

Moreover, the database is the key mechanism used to handle incoming experiment

requests. Each experiment job is encapsulated in the JobRecords table, where it is

tagged with status information such as “QUEUED”, “IN PROGRESS”, “COM-

PLETED”, or “CANCELLED”. The status information can then be used along

with priority and group membership information to implement a first-in first-out

queue of jobs ordered by priorities. The group membership information also ensures

that job owners have the necessary permissions for the Lab Server to satisfy their

experiment requests.

The JobRecords table also contains all other ancillary information relating to ex-

periment jobs, such as the elapsed and estimated execution times, times of submission

and completion, and queue information. Furthermore, it stores the experiment re-

quest itself in the form of the experiment specification sent from the Lab Client, as

well as the lab configuration information for the current experiment. It also contains

the experiment results in the case that the experiment has been successfully com-

pleted at the Lab Server. If an error occurs and the experiment is not executed to

completion, an error message is stored as part of the job record.

Finally, the WebLab is dependent on the database for logging and auditing pur-

poses. All incoming and outgoing web service calls are written to the WebMetho-

dRequestLog table. These entries can then be examined at any time for security,

debugging and WebLab usage evaluation purposes.

A design decision that emerged was the mechanism for communicating between

the web service and the database. Initially, the web service accessed SQL Server with

explicit credentials, by defining a special user on the Lab Server with permissions to

log in to the database. Although this method has the advantage that the database

40

server need not be present at the local host, it requires that a password be generated

and included as plaintext inside the source code. For this reason, the current im-

plementation accesses the database using Windows Integrated Security [34], via the

ASPNET user reserved to web applications.

4.4 Experiment Engine

4.4.1 Preparing the Experiment

The Experiment Engine executes on a separate thread from the Lab Server web

service and has the task of running experiment jobs submitted to it through the

iLab interface. When the web services thread receives an experiment job via the

Submit web service method, the experiment request in the form of an Experiment

Specification is queued at the Lab Server’s database.

When the Experiment Engine is running, it periodically queries the database ev-

ery five seconds to check for incoming experiment requests from users. If the Lab

Server’s experiment queue contains any pending experiments, an experiment request

is selected from the queue in a first-in first-out basis after ordering the jobs in de-

scending order of priority. Each time an experiment request is selected to be run

at the Experiment Engine, it is labeled as “IN PROGRESS” in the Lab Server’s

database.

The list of experiment operations to be executed on the lab hardware for this

experiment job is then loaded at the Experiment Engine. The instructions for running

the experiment are obtained by parsing the Experiment Routine for the current lab,

whose location is stored on the Lab Server’s database. The Experiment Routine can

reside on any world-readable web address (e.g. in the 6.302 Athena locker), which

makes it easy to maintain and modify remotely by 6.302 course staff and WebLab

administrators. Furthermore, it is now possible to easily switch from one experiment

to another (e.g. when changing from one lab assignment to the next) by creating

more than one Experiment Routine files and simply updating the current lab pointer

41

on the Lab Server’s database.

Once this set of experimental instructions has been parsed and loaded into mem-

ory at the Experiment Engine, it is then personalized to execute the user’s particular

experiment request. The user’s particular run of the experiment consists of the pre-

viously loaded list of experimental instructions, along with a number of experimental

parameters whose values have been set to those provided by the user in the Experi-

ment Specification. This personalization of the experiment instructions takes place by

first parsing the Experiment Specification received when the job was submitted, and

then completing the experimental instructions with these user-specified parameters

and their values.

4.4.2 Running the Experiment

Upon parsing and completing the experimental instructions with the user-provided

Experiment Specification, the Experiment Engine is ready to execute the experiment

request on the laboratory hardware.

Running an experiment consists of the following steps executed sequentially at the

Experiment Engine, and the entire process is depicted as a flowchart in Figure 4-5:

1. Resetting the hardware: this step resets the hardware session by pausing any

current measurements and resetting the signal analyzer when necessary.

2. Initializing the experiment: sets the measurement type and mode on the

signal analyzer. The measurement type can be one of frequency response or time

response. The measurement mode is one of linear response, log response, or swept

sine.

3. Preparing the measurement: in this step, the measurement options for the

experiment are set in the order in which they were specified in the Experiment

Routine. The experiment options are divided into three main types:

• Gain: this option sets the command signals on the system under test via the

LabJackTM digital acquisition (DAQ) board. The Experiment Engine commu-

42

Server

+1

+1

+1

+1

DAC

DAC

10-bit

10-bit

AO0

AO1

AO2

AO3

Voltage-Controlled

State-Variable Filter

OUT

Voltmeters

AI0
AI1
AI2
AI3

LabJack IN
DAC Board

OUT1

OUT2

OUT3

OUT0

HP3562A

Figure 4-3: Server-side hardware configuration (taken from Isaac Dancy [31]). The four
command signals (AO0–AO3) issued to the system under test can be set from the Lab
Server via the LabJack. Voltmeters provide administrators with a view of the current
command signals. The Lab Server also controls the HP 3562A measurement via the
GPIB interface.

nicates with the LabJack over USB by means of a dynamic link library called

through a wrapper class.

The first experiment supported by our WebLab consists of a voltage-controlled

state-variable filter described in [31]. In this scenario, the LabJack is used to

drive two analog 5V voltage signals and 20 lines of 5V TTL-compatible digital

logic. These 20 lines are programmed into two 10-bit binary signals in the

software, yielding a total of four effective command signals (AO0–AO3) which

can be set from the client.

A schematic diagram of the hardware interface is provided in Figure 4-3. In

addition, Figure 4-4 depicts the mapping between the LabJack output lines

and the analog and digital inputs to the system under test.

• Source: used to set the source level at the signal analyzer.

• Frequency: sets the start and stop frequency, as well as the sweep rate for

the measurement on the signal analyzer.

43

Figure 4-4: Mapping between the LabJack output lines and the analog and digital
inputs to the system under test. Since the LabJack is limited to two analog 5-volt
voltage signals, we must emulate the last two analog outputs using its 20 lines of 5V
TTL-compatible digital logic. These 20 lines are programmed into two 10-bit binary
signals in the software, yielding a total of four effective command signals (AO0–AO3)
which can be set from the Lab Server.

4. Running the measurement: in the final step, the measurement is started at

the signal analyzer. While the measurement takes place, the Experiment Engine

continually polls the analyzer at one second intervals to check whether the exper-

iment has been completed. Once the measurement is finalized, the experiment

results are dumped from the signal analyzer to the Experiment Engine over the

GPIB connection. The results are then written to the database and the experi-

ment request is marked as “COMPLETE”.

Finally, event handlers are registered with the Experiment Engine to handle a

load event when the Experiment Engine is first loaded, and a close event when the

process is killed. When either of these events is raised, the database is dynamically

notified through the event handler, and thus the Experiment Engine status can be

updated accordingly. This mechanism prevents users from potentially sending ex-

periment requests at a time when the Experiment Engine is not running at the Lab

Server. Instead, they will be notified of the Experiment Engine status by means of a

descriptive error message at the Lab Client.

44

Start
Experiment Engine

Update Experiment Engine
Status on Database

Load Lab Hardware
Parameters

Queued Jobs
in Database?

Wait 5s.

Create Instance
of Lab Hardware

Parse
Experiment Routine

Parse
Experiment Specification

Validate and
Complete Experiment

Reset Hardware

Set Measurement Parameters
(frequency/time response,

linear/log/swet sine)

Set Experiment Options
(gain, source, frequency)

Begin Measurement

Measurement
Complete?

Wait 1s.

Complete Experiment Request
(dump and save data to database,

label request as completed,
call notify on Service Broker)

NO

YES

YES

NO Select highest priority
job or first one in

FIFO experiment queue

YES

Figure 4-5: Flowchart depicting control flow at the Experiment Engine. Running an
experiment at the Experiment Engine consists of four main steps: resetting the hardware,
initializing the experiment, preparing the measurement, and running the measurement.

45

46

Chapter 5

The Feedback Systems Lab Client

The Lab Client provides the user interface to the Feedback Systems WebLab. First,

users must log in to the iLab Service Broker host through their browsers, by supplying

their respective username and password. Once they have been authenticated, they

are provided with a dynamically generated web page from which to launch the Lab

Client. In order to load the Lab Client applet, it is necessary for students to have

installed the Java Plugin alongside Java version 1.4.x or greater. When successful, a

Lab Client window similar to that in Figure 5-1 will appear before the user. If on the

other hand the client system is running an older version of the Java Runtime Engine,

then the user is notified of the fact through a warning message. In such cases, the Lab

Client automatically closes itself and no communication with the Lab Server takes

place.

The Lab Client’s graphical user interface can be divided into three main compo-

nents. First, the upper left side of the screen contains a number of text fields with

their corresponding labels. Here, the user will be able to personalize his or her ex-

periment by varying the value of the parameters that will be sent to the Lab Server

as part of the Experiment Specification. As described in Section 5.2, the Lab Client

applet parses the Lab Configuration it receives from the Lab Server to dynamically

construct these editable components.

Second, on the upper right side of the screen, an image representing the schematic

diagram of the experiment is displayed. The URL of this graphic is again specified

47

Figure 5-1: Client Applet for the Feedback Systems WebLab. The upper-right side of
the applet shows the schematic diagram for the system under test, while at the upper-left
corner the user is able to set a number of experiment inputs labeled with the option’s
name and its units. In the bottom half of the applet, the user can visualize the Bode,
Nichols and Nyquist plots for any retrieved experimental data.

48

in the Lab Configuration and therefore will also be remotely configurable by lab

administrators.

Lastly, the lower side of the screen contains a graph panel that displays Bode,

Nichols and Nyquist plots of the collected data. The graph panel also allow users

to interact directly with the displayed results, by allowing them to select and click

on particular results to access a number of options. Some of these options include

exporting the experiment results to a number of different data formats, and deleting

particular sets of results. The functionality available at the Lab Client is described

in further detail in Section 5.3

5.1 Web Services

The Lab Client communicates with the Service Broker by calling methods from the

iLab Batched Experiment API of Section 2.3.2. In order to access the SOAP-enabled

web methods on the Service Broker, the Lab Client incorporates a lightweight web

services implementation known as kSOAP [35]. Although kSOAP was originally

devised with embedded systems in mind, its small memory footprint makes it well-

suited for building Java applets that support SOAP.

The class KSoapSBServer inherits from the WeblabServer class, and provides an

implementation to call web service methods on the Service Broker host. For instance,

when the Lab Client is first loaded, a call from the Lab Client GUI initialization

code invokes the web method GetLabConfiguration. This method returns the lab

configuration containing the laboratory-dependent parameters that will be used to

populate the Lab Client’s user interface, as described in Section 5.2.

Some of the remaining web service methods called from the Lab Client inter-

face include Submit, used to submit Experiment Specifications to the Lab Server;

RetrieveResults, which queries for experimental results corresponding to a partic-

ular run of an experiment; and GetLabStatus, which retrieves current status infor-

mation pertaining to the Lab Server, such as queue length and estimated wait times.

Finally, the Lab Client also employs a number of client-specific API methods that

49

are not available on the Lab Server. These methods provide a convenient means for

Lab Client users to store their Experiment Specifications and other ancillary data on

the Service Broker host. These data can then be retrieved and deleted at a later time

that is convenient to the user. Some examples of these methods are SaveClientItem

and ListClientItems.

5.2 Dynamic UI Components

One of the design goals of the Lab Client was to provide a user interface that was

generic and flexible enough to be easily reconfigurable depending on the current exper-

imental setup in use at the Lab Server site. We were able to achieve this goal without

requiring modifications to the Lab Client with each new experiment by making use

of dynamic UI components.

The dynamic UI components are completely specified in the Lab Configuration,

which the Lab Client obtains from the Lab Server when it first loads on the user’s

browser. The Lab Configuration, as explained in Section 3.2.1, is derived from the

Experiment Routine at the Lab Server. By editing the Experiment Routine, WebLab

administrators can easily specify the dynamic components that will form part of

the Lab Configuration and which the Lab Client will then use to populate its UI

components.

There are three main types of dynamic UI components that form part of the Lab

Client. The first and most important type is used by users to specify the value of

input parameters for their particular run of the experiment. Inputs are characterized

by a label consisting of a descriptive name for the input along with some units. Since

inputs always take numerical values, each input has a corresponding default value

which is displayed in the text field below the input’s label. Furthermore, every input

is constrained by the Lab Configuration to be in the range between the specified

maximum and minimum values for its input type. Providing an out-of-range value

for the input and attempting to submit the corresponding Experiment Specification

will result in an error message pointing to the offending input value and restating the

50

valid input range.

The second group of UI components encompasses ancillary information relating to

the experiment. Examples of these are the experiment schematic diagram displayed

on the top right area of the Lab Client. In addition, clicking on this image causes a

browser window to open and load a more detailed schematic diagram for the current

experiment. Another example is the location of the experiment handout. Clicking

on the Experiment Handout menu item under Help will similarly open a browser

pointing to the corresponding experiment handout that was provided for the given

experiment. Yet another example is the descriptive label for the experiment, which

appears immediately above the input panel on the top left corner of the Lab Client.

The last type of UI components is used to describe so-called offline data. Of-

fline data are used to provide easy access by Lab Client users to previously obtained

experimental data. This feature could prove useful when comparing measured experi-

mental data with previously computed theoretical values derived from a mathematical

formula or generated by a simulation engine. Another possible use involves the dis-

semination of experimental data that were obtained beforehand by the course staff,

and for which it would be infeasible to run the corresponding experiment by each and

every student in a large class (e.g. the temperature control experiment in feedback

systems).

Offline data are described by a label and a results URL, which the Lab Client

accesses to retrieve and display the corresponding experimental data in much the

same way it would do for live data obtained directly from the Lab Server. In fact,

from the user’s perspective measured data processed at the Lab Server site and offline

data retrieved from a web location are indistinguishable. Even though the manner in

which these two kinds of data are obtained is very different, the operations that users

can perform on them are identical (e.g. exporting the data, visualizing the plots,

etc.).

51

Figure 5-2: Toolbar for the Lab Client. The toolbar provides direct access to the most
useful Lab Client functionality. The same functionality is also available through the
applet menus.

5.3 Functionality

The most important functions available on the Lab Client are easily accessible through

the toolbar found below the input area. All of these functions can also be accessed

indirectly through the Lab Client menus, along with extra functionality not available

via the toolbar.

As shown in Figure 5-2, the toolbar allows students to run experiments on the

Lab Server, retrieve offline data, load and save setups, import and export graph data,

and delete graphs, as well as access the WebLab manual.

The Lab Client can also be navigated by means of its five main menus: File,

Measurement, Graphs, Results, and Help. A complete list of the different functions

that can be accessed through these menus is provided in Table 5.1.

Finally, a detailed account explaining how to operate the Lab Client can also be

found online at the Lab Client manual pages [36]. The main applet structure and

web service classes of our Lab Client borrowed heavily from David Zych’s Graphical

Applet [37] used in the Microelectronics WebLab. Much of the functionality de-

scribed in this section was developed and integrated into the Lab Client by Sriganesh

Lokanathan [38]. Furthermore, the core graphing package used to generate Bode,

Nyquist and Nichols plots was adapted from Brian Williams’ Pole Zero applet [39].

52

Table 5.1: Menus and Icons used in the Lab Client

Menu Item Icon Description

File

Load Setup Loads a saved Experiment Specification lo-
cally or from the server.

Delete Setup Deletes a saved Experiment Specification
from the server.

Save Setup Saves current Experiment Specification lo-
cally or at the server.

Exit Exits Lab Client

Measurement

Run Expt. on Lab Server Submits the current Experiment Specifica-
tion to the Lab Server.

Retrieve Offline Data Retrieves any offline data available for down-
load.

Graphs

Always Replace Sets the graphing mode to always replace the
current plots by the newly generated ones.

Always Add Sets the graphing mode to always add the
newly generated plots to the current ones.

Delete a Graph Deletes the selected graph (and its associated
data) from the Lab Client.

Delete all Graphs Clears all graphs and experimental data con-
tained at the Lab Client.

Save Graph Image Allows each of the Bode, Nyquist and Nichols
plots to be saved to a png graphics file.

(continued)

53

Menu Item Icon Description

Results

View Graph Data Opens a new window displaying the mea-
sured experimental data in text form.

Export Graph Data Allows the measured experimental data to be
saved as either a Matlab or comma-separated
value compatible file.

Import Graph Data Loads experimental data saved to a Mat-
lab or comma-separated value compatible file
into the Lab Client. The Bode, Nichols and
Nyquist plots are updated accordingly.

Help

Experiment Handout Opens a new browser window pointing to the
laboratory handout for the current experi-
ment.

Lab Server Status Retrieves status information from the Lab
Server, such as a wait estimate for submit-
ted jobs and current queue length.

Lab Client Manual Opens a new browser window pointing to the
Lab Client user’s manual.

About the WebLab Client Provides general version and build informa-
tion for the Lab Client.

54

Chapter 6

Field Trial for the Feedback

Systems WebLab

6.1 Student Experience

The trial of the Feedback Systems WebLab and the iLab shared architecture was

conducted in the Fall of 2004 in 6.302 Feedback Systems, a senior-level subject in the

Department of Electrical Engineering and Computer Science at MIT with about 60

students. Students were issued two laboratory assignments using the WebLab. In

the first assignment, students familiarized themselves with the system by running a

simple predefined experiment on the Lab Server and then saving the results at the Lab

Client. In the second assignment, students mathematically analyzed the response of

a voltage-controlled state-variable filter and compared their calculated responses with

those obtained from the actual filter via the WebLab interface. Successful completion

of this assignment required at least four jobs to be submitted by each student in the

class. The actual lab assignment is included in Appendix E.

During the first assignment, the system worked nearly flawlessly with no problems

experienced at the Lab Server. A few minor issues emerged with students accessing

the wrong Service Broker login URL, and with those who did not have the appropriate

Java run-time/plugin configuration on their system, but these were all eventually

resolved. In addition, an MIT AFS outage occurred at around 5 am on October 26th,

55

time during which a few students were unable to access the WebLab service or load

the Lab Client. However, WebLab usage returned to normal once the AFS outage

was eventually resolved. The second assignment was a great success, and no bug

reports or problems were reported by the students.

6.2 Statistics

Statistics were collected for the WebLab usage during the two lab assignments issued

in 6.302 of Fall 2004. As can be seen in Figure 6-1, the queue of the system never held

more than a single job for the first assignment. For the second assignment, however,

the load on the system was considerably higher and a maximum queue length of three

jobs was reported on the night before the assignment was due. At that same time, the

system reached its highest rate of incoming experiment requests, processing a total

of 38 jobs per hour (see Figure 6-3). Overall, 85 percent of the jobs received at the

Lab Server took at most 60 seconds in total to complete, and 96 percent of all jobs

were executed in less than 60 seconds by the Experiment Engine (once selected from

the queue of experiment jobs). A distribution of the job execution and completion

times for the second assignment is show in Figure 6-5.

Figures 6-2 and 6-4 show the distribution of experiment jobs in time. These plots

show how the time taken for an average job to be executed by the Experiment Engine

remained relatively constant at around 60 seconds. On the other hand, the total time

required for a particular job to be processed depended heavily on the queue size at

submit time, and ranged from a minimum of 55 seconds (when the queue was empty)

to a maximum of 208 seconds (when the queue was at its greatest length). Additional

summary statistics for the Lab Server execution records are provided in Tables 6.1

and 6.2.

56

Table 6.1: Descriptive statistics of the Lab Server execution records for the first WebLab
assignment. Job Elapsed is the total time elapsed since an experiment request is first
received at the Lab Server, until it has finished running on the lab hardware and the
measured data have been received at the Lab Server. Execution Elapsed refers to the
time taken for an experiment to be executed at the lab hardware, starting from the time
when the job is selected to be run from the queue of experiment jobs.

Job Elapsed Execution Elapsed

Mean 58.3 Mean 57.3
Median 56 Median 55
Mode 55 Mode 55
Std. Dev. 11.1 Std Dev. 10.3
Variance 123.7 Variance 106.8
Range 80 Range 80
Minimum 55 Minimum 54
Maximum 135 Maximum 134
Sum 4901 Sum 4809
Count 84 Count 84

Table 6.2: Descriptive statistics of the Lab Server execution records for the second
WebLab assignment.

Job Elapsed Execution Elapsed

Mean 63.5 Mean 56.9
Median 56 Median 56
Mode 56 Mode 56
Std. Dev. 22.0 Std Dev. 7.3
Variance 483.7 Variance 52.8
Range 153 Range 72
Minimum 55 Minimum 54
Maximum 208 Maximum 126
Sum 23116 Sum 20727
Count 364 Count 364

57

L
a

b
 S

e
rv

e
r

E
x

e
c

u
ti

o
n

 R
e

c
o

rd
s

(1
0

/1
8

/2
0

0
4

 -
 1

0
/2

6
/2

0
0

4
)

0123456789

1
0

10/18/2004 17:00

10/18/2004 23:00

10/19/2004 5:00

10/19/2004 11:00

10/19/2004 17:00

10/19/2004 23:00

10/20/2004 5:00

10/20/2004 11:00

10/20/2004 17:00

10/20/2004 23:00

10/21/2004 5:00

10/21/2004 11:00

10/21/2004 17:00

10/21/2004 23:00

10/22/2004 5:00

10/22/2004 11:00

10/22/2004 17:00

10/22/2004 23:00

10/23/2004 5:00

10/23/2004 11:00

10/23/2004 17:00

10/23/2004 23:00

10/24/2004 5:00

10/24/2004 11:00

10/24/2004 17:00

10/24/2004 23:00

10/25/2004 5:00

10/25/2004 11:00

10/25/2004 17:00

10/25/2004 23:00

10/26/2004 5:00

10/26/2004 11:00

10/26/2004 17:00

S
u

b
m

is
s
io

n
 D

a
te

No. of Jobs

J
o

b
s
 P

e
r

H
o

u
r

M
a

x
.
Q

u
e

u
e

 L
e

n
g

th
 P

e
r

H
o

u
r

F
ig

u
r
e

6
-1

:
H

is
to

gr
am

of
ex

p
er

im
en

t
q
u
eu

ei
n
g

an
d

ex
ec

u
ti

on
d
u
ri

n
g

th
e

fi
rs

t
W

eb
L
ab

as
si

gn
m

en
t

fo
r

6.
30

2,
F
al

l
20

04
.

58

Lab Server Execution Records

(10/18/2004 - 10/26/2004)

0

20

40

60

80

100

120

140

160

1
0

/1
8

/2
0

0
4

 0
:0

0

1
0

/1
8

/2
0

0
4

 1
2

:0
0

1
0

/1
9

/2
0

0
4

 0
:0

0

1
0

/1
9

/2
0

0
4

 1
2

:0
0

1
0

/2
0

/2
0

0
4

 0
:0

0

1
0

/2
0

/2
0

0
4

 1
2

:0
0

1
0

/2
1

/2
0

0
4

 0
:0

0

1
0

/2
1

/2
0

0
4

 1
2

:0
0

1
0

/2
2

/2
0

0
4

 0
:0

0

1
0

/2
2

/2
0

0
4

 1
2

:0
0

1
0

/2
3

/2
0

0
4

 0
:0

0

1
0

/2
3

/2
0

0
4

 1
2

:0
0

1
0

/2
4

/2
0

0
4

 0
:0

0

1
0

/2
4

/2
0

0
4

 1
2

:0
0

1
0

/2
5

/2
0

0
4

 0
:0

0

1
0

/2
5

/2
0

0
4

 1
2

:0
0

1
0

/2
6

/2
0

0
4

 0
:0

0

1
0

/2
6

/2
0

0
4

 1
2

:0
0

1
0

/2
7

/2
0

0
4

 0
:0

0

1
0

/2
7

/2
0

0
4

 1
2

:0
0

Submission Date

T
im

e
 (

s
e

c
o

n
d

s
)

0

1

2

3

4

Q
u

e
u

e
 L

e
n

g
th

job_elapsed exec_elapsed queue_at_insert

Figure 6-2: Distribution of experiment jobs for the first WebLab assignment for 6.302, Fall 2004. The scatter
graph depicts the total time elapsed until job completion (job elapsed), the queue length when the job was
received at the Lab Server (queue at insert), and the time taken for the job to be executed by the Experiment
Engine (exec elapsed) for individual student experiment requests.

59

L
a
b

 S
e
rv

e
r

E
x
e
c
u

ti
o

n
 R

e
c
o

rd
s

(1
1
/5

/2
0
0
4
 -

 1
1
/1

0
/2

0
0
4
)

05

1
0

1
5

2
0

2
5

3
0

3
5

11/5/2004 19:00

11/5/2004 23:00

11/6/2004 3:00

11/6/2004 7:00

11/6/2004 11:00

11/6/2004 15:00

11/6/2004 19:00

11/6/2004 23:00

11/7/2004 3:00

11/7/2004 7:00

11/7/2004 11:00

11/7/2004 15:00

11/7/2004 19:00

11/7/2004 23:00

11/8/2004 3:00

11/8/2004 7:00

11/8/2004 11:00

11/8/2004 15:00

11/8/2004 19:00

11/8/2004 23:00

11/9/2004 3:00

11/9/2004 7:00

11/9/2004 11:00

11/9/2004 15:00

11/9/2004 19:00

11/9/2004 23:00

S
u

b
m

is
s
io

n
 D

a
te

No. Jobs

J
o

b
s
 P

e
r

H
o

u
r

M
a

x
.
Q

u
e

u
e

 L
e

n
g

th
 P

e
r

H
o

u
r

F
ig

u
r
e

6
-3

:
H

is
to

gr
am

of
ex

p
er

im
en

t
q
u
eu

ei
n
g

an
d

ex
ec

u
ti

on
d
u
ri

n
g

th
e

se
co

n
d

W
eb

L
ab

as
si

gn
m

en
t
fo

r
6.

30
2,

F
al

l
20

04
.

60

Lab Server Execution Records

(11/5/2004 - 11/10/2004)

0

50

100

150

200

250

1
1

/5
/2

0
0

4
 1

2
:0

0

1
1

/5
/2

0
0

4
 1

8
:0

0

1
1

/6
/2

0
0

4
 0

:0
0

1
1

/6
/2

0
0

4
 6

:0
0

1
1

/6
/2

0
0

4
 1

2
:0

0

1
1

/6
/2

0
0

4
 1

8
:0

0

1
1

/7
/2

0
0

4
 0

:0
0

1
1

/7
/2

0
0

4
 6

:0
0

1
1

/7
/2

0
0

4
 1

2
:0

0

1
1

/7
/2

0
0

4
 1

8
:0

0

1
1

/8
/2

0
0

4
 0

:0
0

1
1

/8
/2

0
0

4
 6

:0
0

1
1

/8
/2

0
0

4
 1

2
:0

0

1
1

/8
/2

0
0

4
 1

8
:0

0

1
1

/9
/2

0
0

4
 0

:0
0

1
1

/9
/2

0
0

4
 6

:0
0

1
1

/9
/2

0
0

4
 1

2
:0

0

1
1

/9
/2

0
0

4
 1

8
:0

0

1
1

/1
0

/2
0

0
4

 0
:0

0

1
1

/1
0

/2
0

0
4

 6
:0

0

1
1

/1
0

/2
0

0
4

 1
2

:0
0

Submission Date

T
im

e
 (

s
e

c
o

n
d

s
)

0

1

2

3

4

5

Q
u

e
u

e
 L

e
n

g
th

job_elapsed exec_elapsed queue_at_insert

Figure 6-4: Distribution of experiment jobs for the second WebLab assignment for 6.302, Fall 2004. The
scatter graph depicts the total time elapsed until job completion (job elapsed), the queue length when the
job was received at the Lab Server (queue at insert), and the time taken for the job to be executed by the
Experiment Engine (exec elapsed) for individual student experiment requests.

61

Distribution of Job Execution and Completion Times

(11/5/2004 - 11/10/2004)

0

50

100

150

200

250

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

Time (sec)

N
o

.
o

f
J
o

b
s

Exec Elapsed Job Elapsed

Figure 6-5: Distribution of execution and completion times for the second WebLab assignment
for 6.302, Fall 2004. A number of jobs required more than 140 seconds in total to complete,
corresponding to those times when prior experiment requests had already been queued at the Lab
Server. More interestingly, about 3 percent of jobs took between 70 and 130 seconds to execute at
the Experiment Engine, possibly due to networking and hardware limitations. Unresponsiveness
of the MIT AFS course locker can result in longer wait times when retrieving experiment routines
over HTTP prior to execution. Moreover, the signal analyzer periodically undergoes calibration,
thus becoming unable to process experiment requests.

62

6.3 Student Response to the WebLab

Shortly after completion of the two WebLab assignments, students were asked to

complete a five minute written survey regarding their experiences with the system.

A total of 29 students completed the survey, out of a class size of approximately 60

students. A copy of this survey can be found in Appendix F.

The first set of questions required students to rank the WebLab’s ease of use,

responsiveness, effectiveness in teaching the course material, and effectiveness exper-

imenting on a real system. The results provided in Figure 6-6 indicate that students

had a very positive experience with the ease of use and responsiveness of the WebLab.

90 percent of the students surveyed ranked the ease of use and responsiveness of the

system as acceptable, good or very good. However, the results also show the students’

discontent with the pedagogical effectiveness of the WebLab. For example, only 60

percent of those surveyed regarded the WebLab as an effective tool for experimenting

with a real system, and a disappointing 50 percent considered it to be an effective

aid in teaching the course material.

The second set of questions gave students free reign to comment on the best and

worst aspects of the WebLab. Among the wide variety of responses, the student

consensus was that the system was very easy to use, convenient, provided an intuitive

interface to a real system, and responded quickly to user interaction. In students’

words, these attributes made it easy to “quickly try out different things and see

the result without the headache of setting up and troubleshooting lab equipment”.

On the other hand, a large percentage of the students felt disappointed with the

lab assignment, which they described as “pointless” and “badly parametrized”. In

addition, a few students mentioned that the WebLab felt somewhat artificial, with

“an interface basically indistinguishable from a good Matlab script”. It is interesting

to note that, in general, students who realized they were experimenting on a real

system tended to rate the WebLab assignment high on pedagogical effectiveness.

On the other hand, those students who were not directly aware of this fact or who

commented on its “artificial feel” were much more likely to rate it low on effectiveness.

63

Finally, students were asked their thoughts on incorporating WebLab assignments

in future versions of 6.302. About 55 percent of those surveyed were in favor of using

a combination of WebLab and traditional in-lab assignments, while an additional 10

percent would like to see all lab assignments replaced by WebLab assignments. The

remaining 33 percent of students surveyed would prefer to have only traditional in-lab

assignments in future versions of the course.

6.4 Lessons Learned

From our experience in the course setting and judging from the students’ response, we

are able to make two main observations. First, we found that the students’ perception

of the WebLab’s pedagogical effectiveness is strongly related to the degree to which

the system under test feels like a real system to students interacting with it. Second,

as WebLab assignments become an integral part of the Feedback Systems curriculum,

their success will be partly determined by how well they are integrated with the rest

of the course material and problem sets.

The realization that the WebLab assignments may not appear very real to some

students was highlighted after some discussion with the 6.302 teaching assistants [40].

As a result, a number of students believed they were interacting with a Matlab script

instead of a real system. Consequently, these students were more likely to describe

the WebLab assignments as pointless and tedious than those who were conscious they

were interfacing to real hardware.

The second type of criticism referred to the actual contents of the WebLab as-

signment itself. A number of students felt that the exercise was badly parametrized,

making it cumbersome to calculate inputs to the system. Moreover, some felt that

the lab assignment consisted of tedious and mechanical steps that detracted from

the learning experience and often lead to frustration. Some examples included the

conversion of frequency response data from Hertz to radians per second when com-

paring real and experimental data, as well as exporting experimental data at the Lab

Client in order to import and manipulate it in Matlab [40]. Still other students felt

64

that they were simply testing out or debugging the WebLab, as opposed to carrying

out meaningful lab work. As the first real deploy and trial of the Feedback Systems

WebLab, we recognize the validity of these criticisms and acknowledge that much

further work remains to be done in improving both the content and presentation of

future WebLab assignments.

65

Ease of Use

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Rating
(1 - very poor; 5 - very good)

N
o.

 o
f R

es
po

ns
es

Responsiveness

0

2

4

6

8

10

12

14

1 2 3 4 5

Rating
(1 - very poor; 5 - very good)

N
o.

 o
f R

es
po

ns
es

Effectiveness in teaching course material

0

2

4

6

8

10

1 2 3 4 5

Rating
(1 - very poor; 5 - very good)

N
o.

 o
f R

es
po

ns
es

Effectiveness experimenting on a real system

0

2

4

6

8

10

1 2 3 4 5

Rating
(1 - very poor; 5 - very good)

N
o.

 o
f R

es
po

ns
es

Figure 6-6: Student response to the 6.302 WebLab assignment (Fall 2004). Students were asked to rank
the WebLab’s ease of use, responsiveness, effectiveness in teaching the course material, and effectiveness
experimenting on a real system.

66

Chapter 7

Conclusion and Future Work

7.1 6.302 and the Feedback Systems WebLab

In the light of our experience with the WebLab in 6.302 of Fall 2004, we are able to

draw three major conclusions.

First, the Feedback Systems WebLab has been shown to reliably and efficiently

support a middle-sized class such as 6.302 for web-based laboratory assignments. A

total of 60 students submitted some 360 jobs over the course of their weekly lab

assignment. Out of these jobs, 96 percent were executed in less than 60 seconds at

the Experiment Engine, and 85 percent of the experiment requests were completed in

at most 60 seconds (see Section 6.2). Moreover, the student response to the WebLab

was also very positive, with 90 percent of students surveyed ranking the ease of use

and responsiveness of the system as acceptable, good or very good (Section 6.3).

Second, the students’ perception of the WebLab’s pedagogical effectiveness is

strongly related to the degree to which the system under test feels like a real sys-

tem to students interacting with it. Our survey found that students who were not

conscious they were interfacing with real hardware were more likely to describe the

WebLab assignments as pointless and tedious (see Section 6.4).

Upon discussion with the teaching assistants, we believe that students should

be made aware of the physical reality of the underlying system in order to further

motivate the WebLab assignments [40]. Students could be made cognizant that they

67

are interacting with a real system, and not simply a contrived Matlab script, by

forcing the system into saturation. They could also be provided with opportunities

to explore how the real system analyzed via the WebLab compares to an ideal system

treated mathematically. Yet another possibility would involve incorporating a real-

time view of the system under test, perhaps via a webcam whose live image updates

every few seconds at the Lab Client.

Lastly, the pedagogical effectiveness of the WebLab is only as good as the assign-

ments that are supported by it. The current WebLab assignment served its purpose

well as a proof of concept, yet as acknowledged by the students is in need of further

refinement to bring home the full range of pedagogical opportunities available to re-

mote web-based experimentation. For example, only 60 percent of those surveyed

regarded the WebLab as an effective tool for experimenting with a real system, and

a disappointing 50 percent considered it to be an effective aid in teaching the course

material (Section 6.3).

In particular, future assignments could involve less tedious and mechanical ma-

nipulation of data, and instead focus more on analyzing and comparing the real data

with theoretical models of the system under test. In addition, they could incorpo-

rate some additional Lab Client functionality, such as the possibility of plotting more

than one sets of data (e.g. experimental and theoretical data). Future labs could also

involve Nichols and Nyquist plots, thus allowing students to explore how these plots

can be generated from real data and how they can be used to analyze a real system.

7.2 The Feedback Systems WebLab beyond 6.302

The Feedback Systems WebLab is capable of measuring the response of a number of

different systems. This characteristic makes it suitable to explore and study system

responses in a wide variety of engineering disciplines. Beyond the coursework of 6.302,

our WebLab could also be incorporated into introductory signals and systems courses

(e.g. MIT’s 6.003, and Unified Engineering in the Aeronautics and Astronautics

department).

68

In such a setting, it could be used by students to investigate the effects of pole and

zero locations on system response. It could also allow them to explore second-order

system concepts, such as the significance of the damping ratio ζ, and how it affects

the system’s behavior in the frequency domain. Moreover, the HP 3562A dynamic

signal analyzer is also capable of measuring the time response of a system. Such

functionality thus opens the door to web-based analysis of time-domain behavior, and

could be used in the studies of step responses for a variety of second-order systems.

Lastly, a number of physical systems can be modeled by linear constant-coefficient

differential equations. Examples of these include models of heat flow, as well as

a number of mechanical systems. Moreover, these can often be represented and

implemented by combining first-order and second-order systems in cascade or parallel

arrangements. Thus, lab hardware that implements higher-order systems for electrical

engineering courses can in principle be leveraged in the study of different fields. In

the particular case of feedback systems, adding a third and higher order stages to the

system would enable students to experiment with compensation and how different

compensation schemes affect system behavior.

7.3 Future Prospects for the Feedback Systems

WebLab

A number of improvements have been planned for the next version of the Feedback

Systems WebLab. In the short term, we would like the Lab Client to incorporate a

live image of the system under test obtained from a webcam at the laboratory site.

We are also contemplating converting portions of the current 6.302 thermal-control

system lab into a WebLab assignment.

In the longer term, much work remains to be done on creating WebLab assign-

ments of additional pedagogical value that also integrate well with the rest of the

curriculum. As they become available, the WebLab may begin to make the transition

from being a curious and exciting piece of technology to becoming an indispensable

69

tool in the learning and applying of engineering principles.

To this end, we also envision incorporating a Feedback Systems Simulation Web-

Lab with much of the same flavor as Adrian Solis’ Device Simulation WebLab for

Microelectronic Devices [41]. The simulation functionality could then be further

integrated into our current WebLab, thus providing students with opportunities to

simultaneously compare theoretically derived and measured experimental data for the

same lab assignment. We believe this key enhancement would be of great pedagogical

value to the teaching of control systems.

Finally, as noted by a wise 6.302 student, it is “hands-on experiments that matter

most when you sit down in a lab on the job”. The intended role of the Feedback

Systems WebLab as a complement, not as a substitute, of traditional laboratory

work acknowledges this reality. The WebLab can thus help students save time and

effort on routine hardware setup and configuration, allowing them to focus on the

more important areas of problem analysis and system design that constitute the high

value-added skills of the modern engineer.

70

Appendix A

XML Schema Definitions

A.1 Experiment Routine

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns="http://i-lab.mit.edu" elementFormDefault="qualified"
targetNamespace="http://i-lab.mit.edu"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple elements -->
<xs:element name="description" type="xs:string" />
<xs:element name="selectMeas" type="xs:string" />
<xs:element name="measMode" type="xs:string" />
<xs:element name="label" type="xs:string" />
<xs:element name="defaultValue" type="xs:decimal" />
<xs:element name="minValue" type="xs:decimal" />
<xs:element name="maxValue" type="xs:decimal" />
<xs:element name="simpleImageURL" type="xs:anyURI" />
<xs:element name="detailedImageURL" type="xs:anyURI" />
<xs:element name="resultsURL" type="xs:anyURI" />
<xs:element name="variable1" type="xs:string" />
<xs:element name="variable2" type="xs:string" />

<!-- definition of complex elements -->

<!-- schematic element -->
<xs:element name="schematic">

<xs:complexType>
<xs:sequence>

<xs:element ref="simpleImageURL" />
<xs:element ref="detailedImageURL" />

</xs:sequence>
</xs:complexType>

</xs:element>

71

<!-- offlineData element -->
<xs:element name="offlineData">

<xs:complexType>
<xs:sequence>

<xs:element ref="label" />
<xs:element ref="resultsURL" />

</xs:sequence>
<xs:attribute name="lab" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<!-- initialization element -->
<xs:element name="initialization">

<xs:complexType>
<xs:sequence>

<xs:element ref="selectMeas" minOccurs="1" maxOccurs="1" />
<xs:element name="measMode" minOccurs="1" maxOccurs="1" />

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- option element -->
<xs:element name="option">

<xs:complexType>
<xs:sequence>

<xs:element ref="label" minOccurs="1" maxOccurs="1" />
<xs:element ref="defaultValue" minOccurs="1" maxOccurs="1" />
<xs:element ref="minValue" minOccurs="1" maxOccurs="1" />
<xs:element ref="maxValue" minOccurs="1" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="units" type="xs:string" use="required" />
<xs:attribute name="userEditable" type="xs:boolean" use="required" />

</xs:complexType>
</xs:element>

<!-- function element -->
<xs:element name="function" >

<xs:complexType>
<xs:sequence>

<xs:element ref="option" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<!-- measurement element -->
<xs:element name="measurement">

<xs:complexType>
<xs:sequence>

<xs:element ref="function" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>

72

<!-- constraint element -->
<xs:element name="constraint">

<xs:complexType>
<xs:sequence>

<xs:element ref="variable1" minOccurs="1" maxOccurs="1" />
<xs:element ref="variable2" minOccurs="1" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="type" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<!-- experimentRoutine element -->
<xs:element name="experimentRoutine">

<xs:complexType>
<xs:sequence>

<xs:element ref="description" />
<xs:element ref="schematic" minOccurs="1" maxOccurs="1" />
<xs:element ref="offlineData" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="initialization" minOccurs="1" maxOccurs="1" />
<xs:element ref="measurement" minOccurs="1" maxOccurs="1" />
<xs:element ref="constraint" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="lab" type="xs:string" use="required" />
<xs:attribute name="specversion" type="xs:decimal" use="required" />

</xs:complexType>
</xs:element>

</xs:schema>

A.2 Lab Configuration

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns="http://i-lab.mit.edu" elementFormDefault="qualified"
targetNamespace="http://i-lab.mit.edu"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple elements -->
<xs:element name="description" type="xs:string" />
<xs:element name="label" type="xs:string" />
<xs:element name="defaultValue" type="xs:decimal" />
<xs:element name="minValue" type="xs:decimal" />
<xs:element name="maxValue" type="xs:decimal" />
<xs:element name="simpleImageURL" type="xs:anyURI" />
<xs:element name="detailedImageURL" type="xs:anyURI" />
<xs:element name="resultsURL" type="xs:anyURI" />

73

<!-- definition of complex elements -->

<!-- schematic element -->
<xs:element name="schematic">

<xs:complexType>
<xs:sequence>

<xs:element ref="simpleImageURL" />
<xs:element ref="detailedImageURL" />

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- offlineData element -->
<xs:element name="offlineData">

<xs:complexType>
<xs:sequence>

<xs:element ref="label" />
<xs:element ref="resultsURL" />

</xs:sequence>
<xs:attribute name="lab" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<!-- input element -->
<xs:element name="input">

<xs:complexType>
<xs:sequence>

<xs:element ref="label" minOccurs="1" maxOccurs="1" />
<xs:element ref="defaultValue" minOccurs="1" maxOccurs="1" />
<xs:element ref="minValue" minOccurs="1" maxOccurs="1" />
<xs:element ref="maxValue" minOccurs="1" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="units" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<!-- labConfiguration element -->
<xs:element name="labConfiguration">

<xs:complexType>
<xs:sequence>

<xs:element ref="description" />
<xs:element ref="schematic" minOccurs="1" maxOccurs="1" />
<xs:element ref="offlineData" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="input" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="lab" type="xs:string" use="required" />
<xs:attribute name="specversion" type="xs:decimal" use="required" />

</xs:complexType>
</xs:element>

</xs:schema>

74

A.3 Experiment Specification

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns="http://i-lab.mit.edu" elementFormDefault="qualified"
targetNamespace="http://i-lab.mit.edu"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="experimentSpecification">
<xs:complexType>

<xs:sequence>
<xs:element name="input" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="value" type="xs:decimal" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="units" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="lab" type="xs:string" use="required" />
<xs:attribute name="specversion" type="xs:decimal" use="required" />

</xs:complexType>
</xs:element>

</xs:schema>

A.4 Experiment Result

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns="http://i-lab.mit.edu" elementFormDefault="qualified"
targetNamespace="http://i-lab.mit.edu"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="experimentResult">
<xs:complexType>

<xs:sequence>
<xs:element name="datavector" maxOccurs="unbounded">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string"
use="required" />

<xs:attribute name="units" type="xs:string"
use="required" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="lab" type="xs:string" use="required" />
<xs:attribute name="specversion" type="xs:decimal"
use="required" />

</xs:complexType>
</xs:element>

</xs:schema>

75

76

Appendix B

Defining Experiments for the
Feedback Systems WebLab

In order to clarify the WebLab architecture described in previous chapters, this ap-

pendix works through all the steps needed to run a sample experiment. It begins with

a discussion of an experimental setup specified by the Experiment Routine. It then

describes a possible interaction with the user to produce a personalized experiment

encapsulated by the Lab Client in an Experiment Specification. It concludes with an

account of how to run the experiment at the Lab Server, and the kind of results that

would be obtained upon successful completion of the experiment.

B.1 Experimental Setup

The following Experiment Routine implements a simple experiment with four user-

configurable input parameters: AO0 through AO3. Note how each of these parameters

is described by a unique name, a label, units, a default value and a range of valid

values. The Experiment Routine also specifies the location of the simple and detailed

schematic diagrams corresponding to the experiment.

In addition, the sample experiment provides links to offline data for theoretical

results of single and four pole systems. These data can then be downloaded and

manipulated by the user from the Lab Client.

Finally, the following Experiment Routine defines the current experiment as a

frequency response measurement under swept sine mode. It also sets the source level,

start and stop frequencies, as well as the sweep rate parameters for the experiment.

77

Unlike the gains AO0–AO3, these experimental parameters do not form part of the

Lab Configuration, and are thus unknown (and cannot be modified) by the user.

<?xml version="1.0" encoding="utf-8" ?>
<experimentRoutine lab="labjack" specversion="0.1"
xmlns="http://i-lab.mit.edu" xsi:schemaLocation="http://i-lab.mit.edu
http://web.mit.edu/6.302/www/weblab/xml/experimentRoutine.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<description>6.302 WebLab Experiment 1</description>

<schematic>
<simpleImageURL>
http://web.mit.edu/6.302/www/weblab/images/labs/filter-b.png

</simpleImageURL>
<detailedImageURL>
http://web.mit.edu/6.302/www/weblab/images/labs/filter-s.png

</detailedImageURL>
</schematic>

<offlineData lab="single pole system">
<label>Theory data for 10 Hz to 100 kHz</label>
<resultsURL>
http://web.mit.edu/6.302/www/weblab/xml/dump/theory-single-pole.xml

</resultsURL>
</offlineData>
<offlineData lab="four pole system">

<label>Theory data for 10 Hz to 100 kHz</label>
<resultsURL>
http://web.mit.edu/6.302/www/weblab/xml/dump/theory-four-pole.xml

</resultsURL>
</offlineData>

<initialization>
<selectMeas>freq resp</selectMeas>
<measMode>swept sine</measMode>

</initialization>

<measurement>
<function name="gain">

<option name="AO0" units="V" userEditable="true">
<label>AO<SUB>0</SUB></label>
<defaultValue>1</defaultValue>
<minValue>0</minValue>
<maxValue>5</maxValue>

</option>
<option name="AO1" units="V" userEditable="true">

<label>AO<SUB>1</SUB></label>
<defaultValue>1</defaultValue>

78

<minValue>0</minValue>
<maxValue>5</maxValue>

</option>
<option name="AO2" units="V" userEditable="true">

<label>AO<SUB>2</SUB></label>
<defaultValue>1</defaultValue>
<minValue>0</minValue>
<maxValue>5</maxValue>

</option>
<option name="AO3" units="V" userEditable="true">

<label>AO<SUB>3</SUB></label>
<defaultValue>1</defaultValue>
<minValue>0</minValue>
<maxValue>5</maxValue>

</option>
</function>

<function name="source">
<option name="source level" units="V" userEditable="false">

<label>Source Level</label>
<defaultValue>1.0</defaultValue>
<minValue>1.0</minValue>
<maxValue>2.0</maxValue>

</option>
</function>

<function name="frequency">
<option name="start frequency" units="Hz" userEditable="false">

<label>Start Frequency</label>
<defaultValue>100</defaultValue>
<minValue>1</minValue>
<maxValue>10000</maxValue>

</option>
<option name="stop frequency" units="kHz" userEditable="false">

<label>Stop Frequency</label>
<defaultValue>10</defaultValue>
<minValue>1</minValue>
<maxValue>150</maxValue>

</option>
<option name="sweep rate" units="Sec/Dec" userEditable="false">

<label>Sweep Rate</label>
<defaultValue>5</defaultValue>
<minValue>1</minValue>
<maxValue>100</maxValue>

</option>
</function>

</measurement>

</experimentRoutine>

79

B.2 Creating an Experiment for Execution

Once the experiment described above has been loaded at the Lab Client, the user

is now able to set the values of the gains AO0 through AO3 defined in the Lab

Configuration.

For the sake of this example, the user chooses a value for all gains equal to 1.0 V.

The user then requests her experiment to be executed at the lab site, generating the

following Experiment Specification which is sent as part of her request to the Lab

Server:

<?xml version="1.0" encoding="utf-8" ?>
<experimentSpecification lab="labjack" specversion="0.1"
xmlns="http://i-lab.mit.edu" xsi:schemaLocation="http://i-lab.mit.edu
http://web.mit.edu/6.302/www/weblab/xml/experimentSpecification.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<input name="AO0" units="V">
<value>1.0</value>

</input>
<input name="AO1" units="V">

<value>1.0</value>
</input>
<input name="AO2" units="V">

<value>1.0</value>
</input>
<input name="AO3" units="V">

<value>1.0</value>
</input>

</experimentSpecification>

B.3 Obtaining the Results

Finally, once the user’s experiment request has been successfully processed at the

Lab Server, the Lab Client receives a set of experimental results embedded in the

Experiment Result XML data type. In the following example, the results consist of

three vectors of data, corresponding to the frequency, magnitude and phase measure-

ments determining the frequency response of the system. Note that only the first two

measurements of each vector are included for brevity.

80

<?xml version="1.0" encoding="utf-8" ?>
<experimentResult lab="labjack" specversion="0.1"
xmlns="http://i-lab.mit.edu" xsi:schemaLocation="http://i-lab.mit.edu
http://web.mit.edu/6.302/www/weblab/xml/experimentResult.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<datavector name="frequency" units="Hz">
100.0,100.577306300174,...

</datavector>
<datavector name="magnitude" units="dB">
0.836208992373013,0.836530439529939,...

</datavector>
<datavector name="phase" units="deg">
-11.4084340175456,-11.4635319519532

</datavector>

</experimentResult>

Once the Experiment Result has been parsed at the Lab Client, the frequency

response of the experiment can be plotted and the data points optionally be saved to

a file. Figure B-1 provides a screenshot of the resulting response obtained at the Lab

Client.

81

Figure B-1: Screenshot of Lab Client’s Bode plot panel after executing the sample
experiment at the Lab Server.

82

Appendix C

Integrating the Feedack Systems
WebLab into iLab

Before the Lab Server can receive experiment requests originating from a Lab Client,

it must first be registered at the Service Broker. The steps required to publish a Lab

Server at a given Service Broker are specified in Section C.1.

Similarly, in order for Lab Clients to communicate with a particular Lab Server it

is also necessary for them to be registered with the Service Broker. Once registered,

iLab administrators can grant them the appropriate permissions to access any of the

Lab Servers registered on that Service Broker, as described in Section C.2.

Ultimately, from the user’s point of view, he or she must be able to login to the

Service Broker to access the WebLab. To this end, we must be able to create user

accounts and grant them the necessary resource permissions to execute experiments.

In order to simplify user management, we rely on the creation of groups consisting

of collections of users who have identical permissions. The management of users and

groups is explained in Section C.3.

C.1 Registering the Lab Server

The steps required to register a Lab Server can be divided into two groups: those

steps that take place at the Service Broker, and those that occur at the Lab Server.

83

C.1.1 Updating the Service Broker

In order to register the Lab Server, the WebLab administrator must first login to

the Service Broker’s active server pages with superuser privileges. The Lab Server

can then be registered by clicking on the Manage Lab Servers option under the Lab

Servers and Clients tab. At this stage, a successful registration of a Lab Server

requires the completion of the following entries:

• Lab Server Name: the internal name for the Lab Server.

• Lab Server ID: a unique GUID-based ID that will be used to identify the Lab

Server. This ID is generated at the Lab Server by invoking the CreateServerID

method from the ResourcePermissionManager VB class. Calling this method stores

the GUID as the Lab Server ID in the LSSystemConfig table of the Lab Server

database.

• Web Service URL: the URL for the Lab Server – Service Broker web service.

• Description: a description of the Lab Server.

• Lab Info URL: the URL for the WebLab information pages.

• Contact First Name

• Contact Last Name

• Contact E-mail

• Outgoing Passkey: the passkey used to authenticate requests to the Lab Server

originating at the current Service Broker. This passkey is included in the SOAP

header of all method calls from the Service Broker to the Lab Server web service

interface. It is generated by the Lab Server administrator(s).

• Incoming Passkey: the passkey used to authenticate incoming requests into the

Service Broker originating at the Lab Server. This passkey may be included in

the SOAP header of method calls from the Lab Server to the Service Broker web

84

service interface. It is generated at the Service Broker by clicking on the “Gen-

erate Incoming Passkey” button, once all the above items have been successfully

completed and saved.

The actual values for the 6.302 Lab Server configuration parameters are given in

appendix D.1.

C.1.2 Updating the Lab Server

Before we can communicate between the Service Broker and our Lab Server, however,

it is necessary for the Service Broker to be correctly registered at the Lab Server. For

this purpose, we can invoke the SQL stored procedure rpm AddBroker. Calling this

procedure has the effect of adding a new Broker entity to the Brokers table in the

WebLab service’s database. When registering a new Service Broker, we must provide

the following parameters:

• broker server id: the GUID-based ID for the Service Broker.

• broker passkey: the Lab Server-assigned passkey used to authenticate the Ser-

vice Broker at the Lab Server. This passkey can be generated by invoking the

CreateForeignPasskey function from the ResourcePermissionManager VB class,

which has the effect of updating the Service Broker configuration data stored

in the Brokers table. Also, note that this passkey corresponds to the Outgoing

Passkey of Section C.1.1, and should thus be identical.

• server passkey: the Service Broker-assigned passkey used to authenticate the

Lab Server at the Service Broker. This passkey is generated when registering the

Lab Server at the Service Broker through its active server pages, and corresponds

to the Incoming Passkey of Section C.1.1.

• notify location: the URL for the Service Broker-to-Lab Server web service in-

terface.

After updating the Service Broker configuration, it is necessary to define usage

classes, groups and their resource permissions at the Lab Server. The SQL stored

85

procedure rpm AddClass adds a Usage Class record to the UsageClasses table. We

can then optionally modify the ClassToResourceMappings table to fine tune resource

access, including granting permissions to view or edit a resource, and establishing its

access priority level.

Having established a usage class, the stored procedure rpm AddGroup can then be

invoked to add a particular user group into the Lab Server database. These groups

will usually correspond to those user groups defined at the Service Broker through its

active server pages (e.g. the 6.302 students or 6.302-devel groups), as described in

Section C.3. In addition, each user group belongs to exactly one usage class, which

establishes the resource permissions for that particular group. Thus, updating the

usage class a group belongs to, or modifying the attributes of its current usage class,

provide the main mechanisms for resource permission management at the Lab Server.

Finally, we must update our firewall configuration to allow for incoming connec-

tions from the Service Broker host. In the case of IP filtering, we must add the IP

address of the Service Broker to the list of authorized incoming connections.

C.2 Registering the Lab Client

C.2.1 Updating the Service Broker

As with the Lab Server registration, the WebLab administrator(s) must first login to

the Service Broker active pages with superuser privileges. The Lab Client can then

be registered by clicking on the Manage Lab Clients option under the Lab Servers and

Clients tab. A successful registration of a Lab Client then requires the completion of

the following fields:

• Lab Client ID: the internal name for the Lab Client.

• Name: a descriptive name for the Lab Client.

• Version: version information for this Lab Client.

• Description: an extended description for the Lab Client.

• Contact First Name

86

• Contact Last Name

• Contact E-mail

• Information 01: the label for the dynamic button component pointing to URL

01.

• URL 01: the URL for the dynamic button labeled with “Information 01”.

• Loader Script: the HTML Applet tag to be used when loading the client. This

tag is used to specify such parameters as the serviceURL for the Service Broker

web service interface, and the labServerID for the Lab Server. These parameters

are later read by the Lab Client applet at load time. Also, note that the Service

Broker hostname used to access the WebLab (e.g. i-lab.mit.edu) must match

the one used as part of the labServerID. If this is not the case, attempts at Lab

Client to Service Broker communication will fail. In addition, the applet tag also

specifies the location from which the Lab Client applet jar should be loaded.

After saving the changes, we must associate one or more Lab Servers with our

Lab Client. In this way, we can grant permissions for the Lab Client to access and

submit experiment requests to a particular Lab Server.

The actual values for the 6.302 Lab Client configuration parameters are given in

appendix D.2.

C.2.2 Publishing the Lab Client

Every time the Lab Client is updated, we must replace the compiled jar bundle

with the newer version. The jar file for the Lab Client resides at some predefined web

location whose URL should match that specified in the Loader Script of Section C.2.1.

C.3 Managing Users

To simplify user management, the Feedback Systems WebLab defines four differ-

ent user groups: 6.302-devel, 6.302-tas, 6.302 students, and 6.302 students-request.

The first three of these groups have been granted permission to access the Feedback

87

Systems Lab Client and Lab Server; thus, they allow group members to submit ex-

periment requests through the iLab interface. The latter request group, however, is

conceived as a waiting list for newly registered users whose requests have yet to be

verified. Since these users cannot yet be trusted, members of this group have no

permissions to execute experiments via the interface. Moreover, users with superuser

privileges can easily modify the permissions granted to each of the groups by selecting

the Grants tab in the Service Broker active pages.

New users wishing to be registered must follow the steps below:

1. Point their web browsers to http://i-lab.mit.edu.

2. Click on the “Go” button under New User Registration.

3. Fill out the form, choosing the desired request-group they wish to join from the

list provided (e.g. 6.302 students-request).

4. Press “Submit”, and await a confirmation email from WebLab administrators.

Once a user has submitted his or her registration request, WebLab administrators

automatically receive an email notifying of the incoming request to join the specified

group. Logging into the Service Broker with superuser privileges, and accessing the

Group Membership option under the Users and Groups tab displays all of the different

groups. The new user whose request has just been received should be visible after

expanding the request-group’s node. The administrator can then proceed to manually

verify the request, and move the user to the requested group (e.g. 6.302 students) if

the verification is successful.

A confirmation e-mail can then optionally be sent by the administrator once the

verification stage has been successfully completed. At this point, the registered user

may login to iLab with the username and password they provided along with their

request. The user will then be able to access all of the functionality granted to the

particular group(s) to which he or she belongs.

88

Appendix D

Configuration Information for the
Feedback Systems WebLab

D.1 Lab Server iLab Configuration

Lab Server: 6.302 .NET Lab Server
Lab Server Name: 6.302 .NET Lab Server
Lab Server ID: e2017fa7470844ba8ad63f7a1eece182
Web Service URL: http://serv-6302.mit.edu/labserver/

services/WebLabService.asmx
Description: 6.302 .NET Lab Server
Lab info URL: http://web.mit.edu/6.302/www/weblab/
Contact First Name: Gerardo
Contact Last Name: Viedma
Contact E-mail: gviedma@mit.edu
Outgoing Passkey: (SECRET)
Incoming Passkey: (SECRET)

89

D.2 Lab Client iLab Configuration

Lab Client ID: 6.302 WebLab Client
Name: Transfer Function Lab Client
Version: 1
Description: Meassures the Transfer Function

via the HP Signal Analyzer
Contact First Name: Gerardo
Contact Last Name: Viedma
Contact E-Mail: 6.302-weblab@mit.edu
Information 01: Lab Client User’s Manual
URL 01: http://web.mit.edu/6.302/www/weblab/

client/index.html
Information 02: 6.302 iLab FAQs
URL 02: http://web.mit.edu/6.302/www/weblab/

faq.html
Information 03: 6.302 Homepage
URL 03: http://web.mit.edu/6.302/www/
Information 04:
URL 04:
Loader Script: <APPLET height=1 width=1

archive="http://web.mit.edu/6.302/www/weblab/
jar/signed_Weblab_Graphical.jar"
code="weblab.client.graphicalUI.GraphicalApplet">
<PARAM NAME="serviceURL"
VALUE="http://i-lab.mit.edu/Services/
ServiceBrokerService.asmx">

<PARAM NAME="labServerID"
VALUE="e2017fa7470844ba8ad63f7a1eece182">

</APPLET>
Associated Lab Servers: 6.302 .NET Lab Server

90

Appendix E

6.302 Feedback Systems Fall 2004
iLab Assignment

Note: Problems 2 and 3 of the 6.302 Fall 2004 iLab assignment were written by Isaac

Dancy. For additional information regarding these problems, the reader is referred to

Isaac Dancy’s master’s thesis [31].

Problem 0:

In Problems 1, 2 and 3 we will make use of the 6.302 iLab, an online laboratory that

allows you to conduct experiments from any Java-capable web browser. In order to

complete these online projects, you must have a 6.302 iLab account. Since it may

take several days to process your request, do this part now:

a. Point your web browser at http://i-lab.mit.edu.

b. Click on the “Go” button under New User Registration.

c. Fill out the form, choosing group 6.302-students-request.

d. You will receive email when your press Submit.

e. You will receive another email when your account is fully activated.

Problem 1:

In the next two problems, you will make use of the 6.302 iLab. In this problem, you

will run a short experiment to familiarize yourself with the system.

91

Submitting an experiment to the 6.302 iLab:

a. Log in to http://i-lab.mit.edu with the username and password you specified

in Problem 0.

b. Click on the “Launch Client” button under the 6.302 WebLab Client heading.

c. Once the client has finished loading (this may take a few minutes depending on

your machine), you should see the Lab Client’s Java Applet window appear. Note

that you must have Java version 1.4.x or greater to run the client.

d. On the top left side of the Lab Client window, you will see a number of text inputs

labeled AO0 through AO3. Enter a value of 2.0 for all of these inputs.

e. Now run the experiment by clicking on the leftmost icon in the toolbar below the

input area. Upon submitting your experiment, you should see an estimate of your

progress appear in a new window.

f. Once your experiment has been completed, the measured data will be automati-

cally used to plot the corresponding Bode, Nichols and Nyquist plots on the graph

area in the bottom of the Lab Client window.

g. At this point, you can export the measured experimental data by right clicking on

the corresponding plot and selecting Export Graph Data from the popup menu.

You will then be prompted to enter the file name to which to save your data. Any

exported graph data will be in Matlab compatible format by default, although it

is also possible to export your data to a comma-separated value format via the

dialog.

h. Upon saving your results, you may log out from the WebLab by clicking on the

Log out link at the top of the i-lab.mit.edu browser window.

i. Using your saved experimental data, run Matlab and plot your measured results.

j. Turn in a copy of the Matlab graph.

92

Problem 2:

Pre-lab calculations for the 6.302 iLab assignment.

(a) Consider the following system:

IN OUT
ωn

s

2ζ

s
ωn

What is the closed-loop transfer function of this system? Have you seen this

transfer function before? What does the closed-form of this feedback system

implement?

(b) Now suppose that we cascade two copies of this system and have the freedom

to control the parameters ζ and ωn for each system. For each of the following

pole-zero plots specify the parameters ζ1, ζ2, ωn1 and ωn2 which will generate a

closed-loop transfer function with the corresponding pole-zero plot. (Note: Mul-

tiple solutions may exist. Limit ζ ≤ 1.9 and 2π · 100 rad/s ≤ ωn ≤ 2π · 104 rad/s.)

(i) Four concurrent poles at s = −2π ·

103 rad/s.

(ii) Four poles on the negative real

axis.

4

93

(iii) Two conjugate pairs of poles with

ζ ≤ 0.15 for each system.

(iv) 4th-Order Butterworth filter.

All poles a distance 2π ·103 rad/s

from origin.

α

α

α/2
α/2

α=45ο

(c) Use Matlab to generate the corresponding Bode plot and step response for each

system in part (b).

(d) Butterworth filters are systems that exhibit no magnitude peaking and roll off

with some slope depending on the order of the filter. Generate a plot in Matlab

that compares the magnitude response of systems (i) and (iv). What do you

notice?

(e) Figure E-1 is a simplified block diagram of the circuit running at the server of

this lab. It uses voltage inputs AO0 → AO3 and multiplier chips (Analog Devices’

AD532J) to enable you to tune the closed-loop response to match specific values

of ζ and ωn.

ωn1
s

ωn1
s s

ωn2
s

ωn2

2ζ1 2ζ2

IN OUT

AO0 AO1AO2 AO3

++

_ _ _ _

Figure E-1: Simplified block diagram of WebLab circuit.

94

Figure E-2 is the actual circuit, shown here at half size — inputs AO0,2 for the

first system correspond to inputs AO1,3 for the second system. Generate a block

diagram for this circuit (in the general form of Figure E-1) and determine the

following relationships. Assume the OP27 is ideal and the AD532J function is

Z =
V1 × V2

10

where V1 and V2 are the two input voltages.

(a) AO0 and ωn1

(b) AO1 and ωn2

(c) AO2 and ζ1

(d) AO3 and ζ2

−

+
OP27 AD532J

−

+
OP27

−

+
OP27

1.5k

10nF
39k39k

10k

3.9k

1k 3.9k

20k

10k

AD532J

−

+
OP27

1.5k

10nF

AD532J

IN

AO0

OUT

−

+

OP27
10k

10k

AO2

Figure E-2: Actual circuit.

(e) Parts (i)–(iv). Calculate the input voltages that will result in a system that

matches your solutions to part (b), parts (i)–(iv). Note that the input voltages

are constrained to 0 < AOn ≤ 5 V.

95

Problem 3:

With your pre-lab results from Problem 2, you are now ready to use the 6.302 iLab for

your experiments. Log in at http://i-lab.mit.edu and click the “Launch Client”

button to begin the lab.

(a) Run a frequency sweep for each set of voltages in part (e) of the prelab. Sweep

between 2 and 3 decades in frequency, insuring that you measure all vital parts

of the response while keeping your server request manageable. After each sweep

make sure you download the data.

It is possible that some valid combinations for the prelab actually saturate the

circuit in this part. You will know if this has happened, and should reduce the

magnitude peaking of your solution until it no longer saturates the server circuit.

(b) Use Matlab to plot and print out your measured responses. Ambitious students

can include the theoretical response on the same plots.

(Matlab Hint: This can be achieved by using the form of the bode command that

returns magnitude, phase and frequency information. Use the db command so

that the theoretical magnitude data matches the downloaded data.)

(c) The write up for this lab should be short, simple and informal. Do your best to

conserve paper when printing from Matlab, but do avoid cluttering any one plot

excessively.

96

Appendix F

Fall 2004 6.302 iLab Survey

The following page includes the survey that was handed out to students in the Fall

2004 version of 6.302 Feedback Systems.

97

Fall 2004 6.302 iLab Survey

In order to gauge the effectiveness of the 6.302 WebLab assignments, we need your thoughts on
how the online lab assignments contributed to your learning of the course material. Please take a
few moments to complete the survey and hand it in at the end of class.

1). Overall, how would you rate the ease of use of the 6.302 WebLab?

1 (very difficult) 2 3 4 5 (very easy)

2). How would you rate the overall responsiveness when running experiments on the 6.302
WebLab?

1 (very poor) 2 3 4 5 (very good)

3). How useful did you find the WebLab assignment for learning/applying the course material?

1 (not useful) 2 3 4 5 (very useful)

4). How useful did you find the 6.302 WebLab assignment for analyzing/testing your solution on
a real system?

1 (not useful) 2 3 4 5 (very useful)

5). When completing your WebLab assignment, where did you spend the most time? (Rank
from 1 to 4 in order of importance).

Analyzing/solving the problem. [1 2 3 4]
Learning how to use the WebLab. [1 2 3 4]
Troubleshooting the WebLab. [1 2 3 4]
Waiting for experiment requests to complete. [1 2 3 4]

6). What was the best thing about the 6.302 WebLab?

7). What was the worst thing about the 6.302 WebLab?

8). In future versions of 6.302, what use of the WebLab system would you consider best for
teaching the course material? Please mark one of the following options.

[] Only conventional in-lab assignments.
[] Some conventional in-lab assignments and some WebLab assignments.
[] Only WebLab assignments.

9). Are there any changes to the Lab Client that you think would make the WebLab easier to use?

10). Please write any other feedback or comments here.
__

98

Bibliography

[1] K. H. Lundberg et al., “6.302 iLab homepage: A WebLab for signals,

systems, circuits, and control,” Massachusetts Institute of Technology,

(Date downloaded: December 15, 2004). [Online]. Available: http:

//web.mit.edu/6.302/www/weblab/

[2] M. Exel, S. Gentil, and D. Rey, “Simulation workshop and remote laboratory:

Two web-based training approaches for control,” in Proceedings of the American

Control Conference, vol. 5, Chicago, IL, June 2000, pp. 3468–3472.

[3] D. A. Miele, B. Potsaid, and J. T. Wen, “An Internet-based remote laboratory

for control education,” in Proceedings of the American Control Conference, vol. 2,

Arlington, VA, June 2001, pp. 1151–1152.

[4] M. Casini, D. Prattichizzo, and A. Vicino, “The automatic control telelab,” IEEE

Control Systems Magazine, vol. 24, no. 3, pp. 36–44, June 2004.

[5] D. Z. Deniz, A. Bulancak, and G. Özcan, “A novel approach to remote labora-

tories,” in ASEE/IEEE Frontiers in Education Conference, vol. 1, Boulder, CO,

Nov. 2003, pp. T3E–8–T3E–12.

[6] J. Sánchez, S. Dormido, R. Pastor, and F. Morilla, “A Java/Matlab-based en-

vironment for remote control system laboratories: Illustrated with an inverted

pendulum,” IEEE Transactions on Education, vol. 47, no. 3, pp. 321–329, Aug.

2004.

99

[7] A. Ferrero, S. Salicone, C. Bonora, and M. Parmigiani, “ReMLab: A Java-based

remote, didactic measurement laboratory,” IEEE Transactions on Instrumenta-

tion and Measurement, vol. 52, no. 3, pp. 710–715, June 2003.

[8] M. L. Corradini, G. Ippoliti, T. Leo, and S. Longhi, “An Internet based labo-

ratory for control education,” in Proceedings of the 40th IEEE Conference on

Decision and Control, vol. 3, Orlando, FL, Dec. 2001, pp. 2833–2838.

[9] Q. Yu, B. Cheng, and H. H. Cheng, “Web-based control system design and

analysis,” IEEE Control Systems Magazine, vol. 24, no. 3, pp. 45–57, June 2004.

[10] C. C. Ko, B. M. Chen, J. Chen, Y. Zhuang, and K. C. Tan, “Development of

a web-based laboratory for control experiments on a coupled tank apparatus,”

IEEE Transactions on Education, vol. 44, no. 1, pp. 76–86, Feb. 2001.

[11] H. H. Hahn and M. W. Spong, “Remote laboratories for control education,”

in Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1,

Sydney, Australia, Dec. 2000, pp. 895–900.

[12] J. Harward et al., “iLab: A scalable architecture for sharing online experiments,”

in International Conference on Engineering Education, Gainesville, FL,

Oct. 2004, (Date downloaded: December 15, 2004). [Online]. Available:

http://icampus.mit.edu/iLabs/Architecture/Downloads/default.aspx

[13] B. Aktan, C. A. Bohus, L. A. Crowl, and M. H. Shor, “Distance learning applied

to control engineering laboratories,” IEEE Transactions on Education, vol. 39,

no. 3, pp. 320–326, Aug. 1996.

[14] G. Viedma, I. Dancy, and K. Lundberg, “A web-based linear-systems iLab,” in

American Control Conference, Portland, OR, June 2005, accepted for publica-

tion.

[15] J. del Alamo et al., “Microelectronics devices and circuits WebLab,”

Massachusetts Institute of Technology, (Date downloaded: December 15, 2004).

[Online]. Available: http://weblab.mit.edu

100

[16] S. Lerman and J. del Alamo, “iLab: Remote online laboratories,” (Date

downloaded: August 19, 2004). [Online]. Available: http://icampus.mit.edu/

projects/iLab.shtml

[17] “iCampus,” MIT-Microsoft Alliance, (Date downloaded: August 19, 2004).

[Online]. Available: http://icampus.mit.edu

[18] J. del Alamo, J. Harward, S. Lerman, and K. Amaratunga, “A web-service

architecture to bring labs online,” in Microsoft Faculty Summit 2004,

August 2004, (Date downloaded: December 15, 2004). [Online]. Available:

https://faculty.university.microsoft.com/2004/

[19] S. Dormido, “Control learning: Present and future,” in Proceedings of the IFAC

15th Triennial World Congress, Barcelona, Spain, July 2002, pp. 81–103.

[20] “SOAP Specifications,” The World Wide Web Consortium (W3C), (Date

downloaded: August 27, 2004). [Online]. Available: http://www.w3.org/TR/

soap/

[21] “Extensible Markup Language (XML),” The World Wide Web Consortium

(W3C), (Date downloaded: May 15, 2004). [Online]. Available: http:

//www.w3.org/XML/

[22] “LabView: Visual instrumentation software from NI,” National Instruments,

(Date downloaded: August 27, 2004). [Online]. Available: http://www.ni.com/

labview/

[23] “Web Service Definition Language (WSDL),” The World Wide Web

Consortium (W3C), (Date downloaded: August 27, 2004). [Online]. Available:

http://www.w3.org/TR/wsdl

[24] “Universal Description, Discovery and Integration (UDDI),” OASIS, (Date

downloaded: August 27, 2004). [Online]. Available: http://www.uddi.org/

101

[25] D. Zych, “Lab client to service broker API,” MIT iCampus, Tech. Rep.,

Oct. 2004, (Date downloaded: December 15, 2004). [Online]. Available:

http://icampus.mit.edu/iLabs/Architecture/Downloads/default.aspx

[26] J. Harward, “Service broker to lab server API,” MIT iCampus, Tech. Rep.,

Oct. 2004, (Date downloaded: December 15, 2004). [Online]. Available:

http://icampus.mit.edu/iLabs/Architecture/Downloads/default.aspx

[27] G. Viedma, “Design and implementation of a feedback systems web laboratory

prototype,” Advanced Undergraduate Project, Massachusetts Institute of

Technology, May 2004, (Date downloaded: December 15, 2004). [Online].

Available: http://web.mit.edu/6.302/www/weblab/

[28] “W3C XML Schema,” XMLSchema, (Date downloaded: May 15, 2004).

[Online]. Available: http://www.w3.org/XML/Schema

[29] “Introduction to XML Schemas,” W3Schools, (Date downloaded: August 19,

2004). [Online]. Available: http://www.w3schools.com/schema/schema intro.

asp

[30] “Guide to the W3C XML Specification DTD, Version 2.1,” The World Wide

Web Consortium (W3C), (Date downloaded: May 15, 2004). [Online]. Available:

http://www.w3.org/XML/1998/06/xmlspec-report.htm

[31] I. Dancy, “Educational hardware for feedback systems,” Master’s thesis, Mas-

sachusetts Institute of Technology, Aug. 2004.

[32] P. Dhawan and T. Ewald, “Building distributed applications with Microsoft

.NET,” Microsoft Developer Network, (Date downloaded: September 02,

2004). [Online]. Available: http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnbda/%html/bdadotnetarch16.asp

[33] A. Skonnard, “How ASP.NET web services work,” Microsoft Developer

Network, (Date downloaded: September 02, 2004). [Online]. Available:

http://msdn.microsoft.com/library/en-us/dnwebsrv/html/howwebmeth.asp

102

[34] “Accessing SQL Server from a web application,” Microsoft De-

veloper Network, (Date downloaded: May 15, 2004). [Online].

Available: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

vbcon/%html/vbconaccessingsqlserverfromwebapplication.asp

[35] “kSOAP Project,” Enhydra, (Date downloaded: May 15, 2004). [Online].

Available: http://ksoap.enhydra.org

[36] G. Viedma, “6.302 WebLab lab client manual,” Massachusetts Institute of

Technology, (Date downloaded: December 15, 2004). [Online]. Available:

http://web.mit.edu/6.302/www/weblab/client/client-howto.html

[37] D. Zych, “Microelectronics devices and circuits WebLab client,” Massachusetts

Institute of Technology, (Date downloaded: December 15, 2004). [Online].

Available: http://weblab.mit.edu

[38] S. Lokanathan, “Extension to the feedback systems web laboratory client

prototype,” Advanced Undergraduate Project, Massachusetts Institute of

Technology, July 2004, (Date downloaded: December 15, 2004). [Online].

Available: http://web.mit.edu/6.302/www/weblab/

[39] B. Williams, “A graphical package for Bode, Nichols and Nyquist plots,”

Advanced Undergraduate Project, Massachusetts Institute of Technology,

May 2004, (Date downloaded: December 15, 2004). [Online]. Available:

http://web.mit.edu/6.302/www/pz/

[40] P. Missiuro, Personal communication, December 2004.

[41] A. Solis, “MIT device simulation WebLab: An online simulator for microelec-

tronic devices,” Master’s thesis, Massachusetts Institute of Technology, Sept.

2004.

103

