

Extensions to the Feedback Systems Web Laboratory

Client Prototype

Sriganesh Lokanathan

AUP Final Report

MIT EECS

July 21, 2004

Supervisor: Dr. Kent Lundberg

To Mahju

 3

Acknowledgments

I would like to thank my supervisor Dr. Kent Lundberg for his patient, abundant and insightful

guidance during this project.

I would also like to thank David Zych whose work for the MIT Microelectronics Weblab served as a

framework for the Feedback Systems Weblab Client.

Thanks is also due to Gerardo Viedma for his work on the Weblab Client prototype structure, and to

Brian Williams who created the original graphing applet to produce Bode, Nichols and Nyquist Plots.

 4

Contents

1 Introduction ... 5

2 Weblab Client Extensions .. 6

2.1 Implementation of client side validation checks 6

2.2 Exporting experiment results ... 6

2.3 Implementation of Setup Storage ... 7

2.4 Extensions to the Graphical package .. 8

2.4.1 Frequency Display ... 8

2.4.2 Plotting multiple graphs .. 8

2.4.3 Exporting and Viewing Graph Data 9

2.4.4 Importing saved results data .. 9

2.4.5 Variable Axis ... 10

2.4.6 Direct Graph Manipulation ... 11

2.4.7 Saving Graph Plots as JPEG Image Files 12

A A Typical Usage Scenario of the Weblab Client 13

Bibliography ... 18

 5

Chapter 1

Introduction

Remote access to laboratory equipment is already being implemented at MIT via the iLab initiative1,

a project under the iCampus initiative here at MIT. The project has already demonstrated success in

maximizing usage of expensive equipment while maintaining the safety of equipment use and

maintenance and maximizing the learning experience for students, while allowing them 24 hour

access opportunities.

The current development effort to build a Weblab system for the MIT Feedback Systems class

(henceforth referred to as Weblab), has leveraged quite a bit of the tools and framework provided by

the Weblab system that was developed for MIT's Microelectronics Devices and Circuits class [1].

The current Weblab prototype consists of the of the extensions and re-implementation work done by

Gerardo Viedma [2] to adapt this original system to the Feedback Systems Weblab as well as the

graphing tools developed by Brian Williams [3].

This paper describes the extensions that were done to the prototype Weblab client to enhance its

results-handling functionality as well as to enhance the graphics capabilities of the prototype

Weblab Client.

1 http://ilab.mit.edu

 6

Chapter 2

Weblab Client Extensions

While some of the extensions that were done were for data handling and communication, the bulk of

the extensions were to increase the versatility and functionality of the graphical engine.

The Weblab Client was augmented with functionality to allow the user to export the results as well

as to be able to save their experiment setups for reuse. In extending the graphical engine, the

primary objectives were to enhance the user's experience while extending the versatility of the

graphing functionalities. With this in mind, changes were made to handle multiple graphs with

automatic axis resolution. Also all plotted graphs can now be saved locally by the user as JPEG

image files. In addition, usability was enhanced by giving the user direct access to manipulate a

drawn graph by the implementation of a right-click activated popup menu.

2.1 Implementation of client side validation checks
In order to reduce the burden on the lab server, some client side validation was added to the input

before the experiment specification is submitted by the client. The decision was made to implement

only limited validation checks to the client applet, so that the applet jar file size could be kept to a

minimum.

The validation checks added were simply range checks on the input data. While generating an

experiment specification for submission to the Lab Server, each numerical input was validated

against its corresponding ranges as specified by the Lab Configuration. Should such range errors

exist, the user is prompted to change the incorrect inputs such that they conform to their respective

pre-set range limits.

2.2 Exporting experiment results
The results received by the lab client always consist of an XML data stream containing three data

vectors, namely Frequency (in Hz), Magnitude (in dB) and Phase (in degrees). This data is used by

the client to generate the required graphs. The decision was made to extend the use of this result

data set by allowing the user to export the raw data into local files. The idea was that the user could

then import this data into some mathematical or graphical package.

 7

Two relevant formats for the exported results data were as a Comma Separated Value (CSV) file or

as a Matlab file (*.m files). The existing client framework that we used already had some embedded

code to export the data as CSV files. I used this as a guide to re-implement the "Export Results"

functionality to allow for data export as an ASCII-format Matlab file as well as a CSV file. Even the

original existing code was re-implemented because of the extension of the graphical package to

allow plotting of multiple result sets2.

2.3 Implementation of Setup Storage
The iLab infrastructure allows lab clients to save and load experimental setups (i.e. the users data

inputs for a particular experiment) on the Service Broker server [4]. The client applet framework that

we used already had some code to implement this functionality for the 6.012 Lab Experiments [1].

The code used for the communication was reused mostly unchanged. However, the

ExperimentSpecification unmarshaller3 class was re-written. The new unmarshaller code for the

loading the setups was based mainly on the code written earlier for unmarshalling the Lab

Configuration [2].

In addition, functionality was also added for the user to save and load setups on the local machine.

This extra feature adds a layer of redundancy so that the client (in this case the user) is not

dependant solely on the Service Broker.

The process of saving a setup involves creating a valid experimental specification and then writing

that to an XML file (if the setup is stored on the local machine) or transmitting it for remote storage in

the Service Broker's database. Thus, the process of saving a setup also runs the inputs through the

client-side validation checks prior to saving.

One layer of checking that was added, was to make sure that the setup that the user tries to load is

valid for the latest experiment (i.e. Lab Configuration) that the Weblab client is configured for. This

was necessary to prevent users from accidentally trying to run older experimental setups on a Lab

Configuration that didn't support it.

2 Refer to Section 2.4.3 Exporting and Viewing Graph Data.
3 An unmarshaller class is a class that governs the process of de-serializing XML data into Java content trees. The new
ExperimentSpecification class also validates the XML data to make sure it is properly formatted before de-serializing the
XML data into Input objects.

 8

2.4 Extensions to the Graphical package

2.4.1 Frequency Display.

The existing applet's graphing package was only taking in the Magnitude and Phase data and

distributing them evenly over an assumed range of frequencies. This was appropriate for the original

graphing applet [3] whose purpose was different. However, we needed to plot the received

frequency data. The FreqResponse class was re-implemented to store the actual received values

instead of generating a fixed frequency spread everytime.

2.4.2 Plotting multiple graphs
The existing applet allowed the user to plot only one set of results at a time. It didn't have any

functionality to allow the user to compare multiple generated graphs with each other. It was decided

to extend the applet to allow for this functionality.

A careful examination of the code implemented for the original graphing applet [3] for the graphing,

revealed that the graphing framework he created could easily be extended to handle multiple

graphs. I implemented a few new methods to this framework, which allowed the client to retain the

existing graph data when executing the experiment with a new set of input values. Williams’

graphing framework [3] consisted of a LinearSystemHolder object, which holds a vector of systems

(i.e. Frequency Response and/or Step Response). The LinearSystemHolder class was extended

with some new methods to selectively delete a system and to retrieve information about a particular

system. This information could be the Frequency, Magnitude and Phase data and the color of a

specific system. The LinearSystemHolder object could also be queried to return the index of a

system with a particular color4.

A new interface GraphColors was also created in the graphutils package to hold two constant

arrays. One was a Color array (COLOR_SELECTION) to hold all the possible graph colors and the

other was a String array (COLOR_NAME) to hold the names of the colors. The length of the arrays

(which had to be equal) determines how many graphs can be drawn. If in future the need arises to

allow the user to be able to plot more graphs, the only change required is to add a new color to the

COLOR_SELECTION array and enter its corresponding name (in its corresponding index position)

in the COLOR_NAME array.

4 Refer to Section 2.4.6 Direct Graph Manipulation

 9

In addition, the local object that holds the results data (which is called FreqResponse5) was

extended to assign a unique color to each graph. Whenever LinearSystemHolder instantiates a new

FreqResponse object it assigns it a color by cycling through the list of colors and assigning the first

available un-used color

Additional code was also written so that the applet had a mechanism through which the user could

change the mode under which the graphing occurred. The two modes were "Always Replace" (also

the default mode) and "Always Add". These changes were implemented in the graphicalUI package

to make use of the new methods implemented to the LinearSystemHolder class.

2.4.3 Exporting and Viewing Graph Data
Once the applet was extended to allow multiple graphs to be displayed, some of the earlier

functionality had to be re-implemented. In particular the “Export Results” and “View Results”

functions had to be re-implemented so that the user first chooses the graph whose data set he

wishes to export or view.

In re-implementing these functions, I could no longer directly read from a Results object, since this

only contained the last set of results returned by the Lab Server. Instead, the results data is now

read off the FreqResponse objects that are instantiated for each Graph.

2.4.4 Importing saved results data
Since the applet had the ability to export the experiment results into a Matlab or CSV file, a logical

extension was to add the functionality to also import the data from saved results files. A new

DataImport class was created to handle this functionality with a new DataImportException class as

well. The DataImport class can easily be extended to handle other file formats by just writing a new

method for the new file format.

Extra code was also added to the MainFrame and ResultsPanel classes under the graphicalUI

package to handle this new functionality.

5 The name maybe a bit misleading since the underlying graphing package was imported from Williams’ original applet
[3].

 10

2.4.5 Variable Axis
The underlying graphical framework [3] had some limitations when it was integrated into our client.

One limitation was that all the graphs had a fixed axis. The grid consisted of three vertical and three

horizontal lines. Since the panel on which the graph was drawn was used entirely to display the

graph, it meant there were no labels for the edges of the graph grid.

The axis has now been extended to allow for variable axis ranges while at the same time allowing

for more grid lines. When drawing the axis, the minimum and maximum points (which make up the

edges of the graph) are calculated for each axis by examining the minimum and maximum values of

all the different graphs that are to be drawn.

Based on the minimum and maximum values of the actual graph data (i.e. frequency, magnitude

and phase) the minimum and maximum points (i.e. edges) of the axis are calculated by rounding off

these values to the nearest "regular" value. The "regular" minimum and maximum value for an axis

is calculated differently depending on whether the variable is frequency, magnitude or phase.

Frequency

The minimum frequency among all the graph data is determined and then rounded down such that it

is the nearest power of 10. This value constitutes the minimum value of the frequency axis.

Similarly, the maximum frequency among the graph data is rounded up to the nearest power of 10.

This calculated value is the maximum value of the frequency axis.

Magnitude

Here the minimum and maximum axis values are determined by the range of the entire set of

magnitude values that will be plotted. The following chart describes this approach. The minimum

and maximum magnitude values are rounded down and up respectively to the nearest multiple of

RoundOffValue which in turn is dependant on the range. The RoundOffValue is also the distance

between any two grid lines on the magnitude axis.

Range (dB) RoundOffValue (dB)

range<=10 1

10<range<=20 2

20<range<=40 5

40<range<=80 10

Range > 80 20

 11

Phase

The minimum and maximum axis values are calculated in the same manner as that for magnitude

however the RoundOffValues and the corresponding ranges that it applies to are different. Here too,

the RoundOffValue is the distance between any two grid lines on the phase axis.

Range (degrees) RoundOffValue (degrees)

range<=10 1

10<range<=45 5

45<range<=90 15

90<range<=180 30

range > 180 45

2.4.6 Direct Graph Manipulation
From a usability point of view, I decided that it would be convenient to the user to be able to directly

manipulate a graph without having to go through the process of choosing a graph function and then

having to choose the graph. I decided to implement a popup menu that could be obtained by right

clicking the mouse over a graph. This menu allows the user to directly access all relevant functions

related to a particular graph. These include exporting the graph results data, viewing the graph

results data, deleting the graph and deleting all graphs.

The process of associating the popup menu with the right graph was done by first getting the color

of the pixel under the mouse. If that color was one of the graph colors then a popup menu is created

with that color which in turn uses it to calculate the appropriate index of the graph in the vector of

systems.

In case that the color of the pixel directly under the mouse is not a graph color then it looks for the

first graph color that may exist in the 8 pixels surrounding the central pixel (basically a 3x3 pixel

matrix with the central pixel being the one the mouse is under). The 3x3 pixel matrix size was

determined by testing how the mouse behaved. It is a large enough size so that the user doesn't

have to precisely maneuver the mouse pointer over the exact graph pixel, while at the same time

being not so large that it effects the resolution of choosing a specific graph if other graphs also have

points which intersect the pixel matrix.

In order to utilize Java’s PixelGrabber class to resolve the color of a pixel, the implementation of

how the graph was painted was changed. The existing applet would draw to a Java Graphics object,

which was then finally painted on the panel. This was changed so that now it draws to a

BufferedImage object, which is then painted on the screen. In doing this change I also realized that I

 12

could store a copy of the BufferedImage in memory instead of have to rebuild it every time the panel

needs to be repainted, when another window intersects its viewing rectangle. This resulted in a

slight increase in performance, with a new BufferedImage being calculated only when a graph is

added or deleted.

In order to implement this functionality most of the classes under the graphutils package had to be

changed. This was mainly so that the MainFrame object could be passed downward to the

individual graphing classes from where the popup menu is instantiated.

2.4.7 Saving Graph Plots as JPEG Image Files
The main users of the Weblab client would be students utilizing it do class assignments. This meant

that they would potentially have to hand in the graphs that were plotted in running the experiments.

With this in mind, the Weblab client was extended with the functionality to save the plotted graphs

(Bode Plot, Nichols Plot and/or Nyquist Plot) as JPEG images.

This functionality was implemented by including a sub-menu in the Graph Menu in the MainFrame

class, which allowed the user to choose which graph plot to save. This action resulted in a call to the

getGraphImage method in the ResultsPanel class, which in turn calls the corresponding

getGraphImage method in the OutputGraphs class (in the graphutils package). The getGraphImage

method in the OutputGraphs class generates and returns a BufferedImage of the Component that

displays the plot the user was trying to save. The calling method in the MainFrame class then

encodes this BufferedImage object with a JPEG-Encoder and writes the contents to a .jpeg file.

 13

Appendix A

A Typical Usage Scenario of the Weblab Client

When the user launches the client by logging into the Service Broker, the applet retrieves the latest

Lab Configuration and configures the client to accept the relevant inputs from the user.

The applet consists of the two sections. The top section contains the input fields and a display of the

relevant lab circuit diagram for that lab experiment. The bottom section contains the graph panels

which will display the graphs.

A typical user scenario is described below assuming that the applet has loaded and displayed some

Lab Configuration.

Fig A.1: The Weblab Client after it is launched.

 14

1. The user fills in the input fields and presses the “Execute” button.

The applet first does some trivial validation checks. Any errors in the data is notified and the user is

prompted to correct the appropriate entry. Once the data has been successfully validated, an

Experiment Specification is created and submitted to the Lab Server (via the Service Broker). A

progress bar is displayed telling the user where his job is currently on the server and the time it will

take to return the results.

2. Once the applet receives results from the Lab Server, it is at once used to plot the relevant

graphs, which are displayed.

Fig A.2: The Toolbar

3. The user chooses to retrieve some offline results that may be needed for the lab experiment. To

do this the user click on the “Retrieve Offline Results” button and is presented with a dialog allowing

him to choose one from a predefined list of offline results.

4. The applet retrieves this offline data and plots it, clearing all previous graphs from the graph

panels.

Execute

Retrieve Offline
Results

Load Setup

Save Setup

Export Results

Import Results

Delete a Graph

Delete all
Graphs

Lab Info

 15

5. The user decides that he wants all his subsequent results to be plotted on top of this existing

graph. So he changes the graph mode from “Always Replace” to "Always Add".

Fig A.3: The Graphs Menu

6. The user submits a new job with new parameters to the Lab Server.

7. Once the Lab Server returns the result, the relevant graphs are plotted on top of any existing

graph. The new graph is displayed in a new color.

8. The user could repeat steps 6 and 7 twice more so that four different graphs are displayed.

Fig A.4: The Bode Plot panel displaying four different graphs

 16

9. Should the user try to submit yet another experiment, he will be unable to do so. The applet

instead informs the user that the maximum number of graphs that could be displayed at any one

time is 4 and that one or more current graphs should be removed, prior to submitting a new

experiment.

10. The user then right clicks his mouse over the appropriate graph and chooses to delete that

graph from the popup menu.

Fig A.5: The popup menu obtained by right clicking over a graph

11. The user chooses not to submit his new experiment specification but instead to save it so that

he can submit it later. He clicks on the Save Setup button and from the subsequent dialog box

chooses to save the setup on his local machine (the other option was to save it on the Server).

A Save File Dialog box is displayed allowing the user to save the setup on his local machine as an

XML file.

12. The user decides that he would like to export his first experiment results. He either right clicks

on the appropriate graph and chooses the Export Results menu item or directly clicks on the Export

Results button. If he had clicked on the Export Results button, he has to first choose the appropriate

graph. The Graphs are not named but color-coded so that he can identify which graph results he

wants to save. Upon choosing a graph a Save File Dialog box is displayed. The user can choose to

save the results either as a Comma Separated Value (CSV) file or as an ASCII Matlab text file. The

user chooses a Matlab format and downloads the file.

13. The user then enters some new experimental parameters and submits the job to the Lab Server.

Once the results are returned they are again plotted on top of the existing three graphs.

14. At this point, the user decides that he wants to start again and decides to clear the graph panel

by clicking the Delete All Graphs button.

 17

15. He first decides to load the experiment results that he had exported to a Matlab file. He Clicks

on the Import Results button and loads the appropriate results file that he had saved earlier.

16. He then also decides to load the experimental setup that he had saved earlier. He does this by

clicking on the Load Setup button. He then chooses the origin of this setup by choosing the "Load

Setup from Local File" option. He chooses the appropriate XML file from the subsequent Load

dialog and clicks enter.

17. The applet validates the experimental setup to make sure that it is a valid experimental setup for

the current Lab Configuration. If it isn't then the user is notified of this. If the loaded setup is valid

then the applet populates all the input fields with the values from the stored experimental setup.

18. The user submits this job to the Lab Server and once the results are returned, they are plotted

on top of the last graph.

19. Satisfied with his results, the user exports the last graph results as a CSV file and saves it on his

local machine.

20. The user chooses to save the Nichols Plot as a JPEG file by choosing Graphs → Save Graph

Image → Save Nichols Plot. A Save Dialog box and allows the user to save the graph image as a

JPEG image file.

Fig A.6: The Save Graph Image sub-menu.

21. The user chooses to close the applet by choosing the Exit menu item from the File Menu.

 18

Bibliography

[1] Zych, David. Microelectronics Devices and Circuits Weblab Client. http://weblab.mit.edu

[2] Viedma, Gerardo. Design and Implementation of a Feedback Systems Web Laboratory

Prototype. Advanced Undergraduate Project, Massachusetts Institute of Technology, May 2004

[3] Williams, Brian. Educational Java Applet for Linear System Responses.

http://web.mit.edu/6.302/www/pz. Advanced Undergraduate Project, Massachusetts Institute of

Technology, May 2004

[4] Zych, David. Lab Client/Service Broker API

