6.251/15.081J Recitation 7

David B. Brown^{*}

October 24, 2002

1 Brief Discussion

1.1 Subgradients

2 Examples

Example 2.1. [1], exercise 5.10.

Example 2.2. [1], exercise 5.15(a),(b).

Example 2.3. (Taken from [2], chapter 7). Consider the parametric cost LP:

minimize
$$(\boldsymbol{c} + \lambda \boldsymbol{c}^{\star})^T \boldsymbol{x}$$

subject to $A\boldsymbol{x} = \boldsymbol{b}$
 $\boldsymbol{x} \ge \boldsymbol{0}.$

If the objective value is known to be unbounded below for some value $\lambda = \lambda_0$, prove that the objective value is unbounded below for λ in at least one of the intervals $(-\infty, \lambda_0]$ or $[\lambda_0, \infty)$.

Example 2.4. [1], exercise 6.5.

Example 2.5. [1], exercise 6.8.

References

- [1] Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization. Athena Scientific, 1997.
- [2] Murty, K.G. Linear and Combinatorial Programming. John Wiley & Sons, 1976.

^{*}dbbrown@mit.edu