6.251/15.081J Recitation 6

David B. Brown*

October 10, 2002

1 Review Problems

Example 1.1. For each of the following claims, state whether true or false and justify briefly. Assume standard form unless otherwise stated.

- (a) $\mathcal{N}(A)$ is a subspace.
- (b) A rank-deficient matrix always has a nullspace of dimension greater than zero.
- (c) The system Ax = 0 has a nonzero solution if and only if the rows of A are linearly dependent.
- (d) A nonempty polyhedron in standard form can contain at most $\binom{n}{m}$ vertices, and there are LP instances for which this bound is tight.
- (e) Degenerate BFSs result in a standard form system if and only if the system has redundant constraints.
- (f) A BFS for a standard form system is degenerate if and only if multiple bases correspond to it.
- (g) The polyhedron $\{x \in \mathbb{R}^n \mid Ax \leq 0\}$ has either zero or one extreme point.
- (h) The tableau columns corresponding to slack variables are precisely the columns of B^{-1} .
- (i) There exist multiple optimal solutions if and only if there exists a basis with some zero nonbasic reduced costs.
- (j) Let $(\boldsymbol{x}_B, \boldsymbol{x}_N)$ be a BFS and $\bar{\boldsymbol{c}}$ be its reduced costs. For any other feasible solution \boldsymbol{y} , the cost difference between \boldsymbol{x} and \boldsymbol{y} is $\bar{\boldsymbol{c}}_N^T \boldsymbol{y}_N$.

^{*}dbbrown@mit.edu

- (k) Regardless of the pivoting rule employed, the simplex method will never cycle for a problem with one equality constraint.
- (1) An algorithm for finding a solution to a set of linear inequalities implies an algorithm for solving an LP, and vice versa.
- (m) The system $Ax \leq b$ is feasible if and only if the rows of A are linearly independent.
- (n) (Modified from [3], ch. 4). A system of linear inequalities is infeasible if and only if there exists a nonnegative linear combination of the inequalities which is inconsistent by itself.
- (o) Dual degeneracy implies primal non-uniqueness.
- (p) If the dual has multiple optimal solutions, then all optimal primal BFSs are degenerate.

Example 1.2. (Modified from [3], ch. 2).

Consider a standard form tableau at a non-optimal BFS. Suppose that for the problem we have the constraint $\mathbf{1}^T \boldsymbol{x} \leq \alpha$. Let $\bar{c}_s = \min_{1=1,\dots,n}(\bar{c}_i)$ and z be the objective value of the current BFS. Prove that $z + \alpha \bar{c}_s$ is a lower bound to the optimal value of the problem.

Example 1.3. (From [4], ch. 3).

Suppose an LP in standard form has two columns that are proportional with a positive constant of proportionality. Construct an equivalent LP with one fewer column.

Example 1.4. [1], exercise 4.19.

Example 1.5. (From [2], ch. 4).

Interpretation of LP dual via relaxed problems. Consider the inequality form LP

minimize
$$c^T x$$

subject to $Ax \leq b$

with optimal value p^* . Suppose that $\mathbf{w} \in \mathbb{R}^m$ satisfies $\mathbf{w} \geq \mathbf{0}$. If \mathbf{x} is feasible for the LP, it also satisfies the inequality

$$\boldsymbol{w}^T A \boldsymbol{x} \leq \boldsymbol{w}^T \boldsymbol{b}.$$

Geometrically, this means that for any $w \geq 0$, the halfspace

$$H_w = \{ \boldsymbol{x} \in \mathbb{R}^n \mid (\boldsymbol{A}^T \boldsymbol{w})^T \boldsymbol{x} \leq \boldsymbol{w}^T \boldsymbol{b} \}$$

contains the feasible set for the LP. Therefore if we minimize the objective $c^T x$ over the halfspace H_w we get a lower bound on p^* .

- (a) Derive an expression for the minimum value of $c^T x$ over the halfspace H_w as a function of $w \ge 0$.
- (b) Now formulate the problem of finding the best such bound, by maximizing the bound obtained by choice of $w \ge 0$.
- (c) Relate the result of (b) to the dual of the LP.

References

- [1] Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization. Athena Scientific, 1997.
- [2] Boyd, S., Vandenberghe, L. *Convex Optimization*. Course reader. Stanford University, 2001.
- [3] Murty, K.G. Linear and Combinatorial Programming. John Wiley & Sons, 1976.
- [4] Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, 1982.