6.251/15.081J Recitation 1

David B. Brown*

September 5, 2002

1 Review

1.1 Basic Linear Algebra

1.1.1 Key Terms and Ideas

Know the formal definitions and have intuition for the following:

- 1. Linear independence
- 2. Subspace
- 3. Span
- 4. Basis
- 5. Dimension
- 6. Matrix range
- 7. Matrix nullspace
- 8. Matrix rank
- 9. Affine subspace

1.1.2 Commonly-Used Inversion and Transposition Properties

2 Examples

Example 2.1. (Taken from [1], chapter 3). Give an explicit solution of each of the following LPs, describing the conditions under which the problem is

^{*}dbbrown@mit.edu

unbounded below, infeasible, etc.

(a) Minimizing a linear function over an affine set.

minimize
$$c^T x$$

subject to $Ax = b$.

(b) Minimizing a linear function over a halfspace.

 $\begin{array}{ll} \text{minimize} & \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & \boldsymbol{a}^T \boldsymbol{x} \leq b, \end{array}$

where $\boldsymbol{a} \neq 0$.

(c) Minimizing a linear function over a rectangle.

 $\begin{array}{ll} \text{minimize} & \boldsymbol{c}^T \boldsymbol{x} \\ \text{subject to} & \boldsymbol{l} \leq \boldsymbol{x} \leq \boldsymbol{u}, \end{array}$

where $l \leq u$.

(d) Minimizing a linear function over the standard simplex.

minimize
$$c^T x$$

subject to $\mathbf{1}^T x = 1$
 $x \ge 0.$

Example 2.2. (Taken from [1], chapter 3). The infinity (induced) norm of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $||A||_{\infty,i}$, is defined as

$$\parallel A \parallel_{\infty,i} = \max_{i=1,\dots,m} \sum_{j=1}^n \mid a_{ij} \mid .$$

This norm is sometimes called the max-row-sum norm.

Consider the problem of approximating a matrix, in the max-row-sum norm, by a linear combination of other matrices. That is, we are given k+1 matrices $A_0, \ldots, A_k \in \mathbb{R}^{m \times n}$, and need to find $\boldsymbol{x} \in \mathbb{R}^k$ that minimizes

$$\| \mathbf{A}_{\mathbf{0}} + x_1 \mathbf{A}_1 + \dots + x_k \mathbf{A}_k \|_{\infty,i}$$

Express this problem as an LP.

References

[1] Boyd, S., Vandenberghe, L. *Convex Optimization*. Course reader. Stanford University, 2001.