Outline:

e Finish uncapacitated simplex method
e Negative cost cycle algorithm
e The max-flow problem

e Max-flow min-cut theorem

Uncapacitated Networks: Basic primal and dual
solutions

e [low conservation constraints Af =b
(rows < nodes; columns « arcs)

e delete last row: Af =b

e basic (feasible) solution « (feasible) tree solution
n — 1 basic variables: flows that lie on the tree
(easy to calculate given the tree)

e Calculation of dual basic solution p (one variable per node)

~

|
1 Pa1] | Ay - Apm-1) | = [¢BO) " CB(-1)]
|

| |
[pl " Pn—1 0] AB(l) AB(n—l) = [03(1) ' "CB(n—l)]

i.e., use original columns (dimension n), but set p,, = 0

o if (i,7) Etree, i.e., fi; is basic, p; — p; = ¢i;
solve by starting at “root” node n, move down the tree

® p; — p; = cost of path from ¢ to j along the tree

e for (7, j) outside the tree:
Cij = ¢ij — (pi — pj)= cost of cycle created by arc (i,).

Uncapacitated Network Simplex Algorithm

e Algorithm:
Start with a tree 7', and flows f;;, (i,7) € T
— py = 0; solve p; — pj = ¢y, (i,5) €T

—For (i,7) ¢ T, let ¢;j = ¢ij — (pi — pj)
— It all ¢;; > 0, then optimal,
and the p; are a dual optimal solution

— Else pick (Z,j) with Cij < 0
— Consider cycle created by arc (¢, j)

— “Push” flow around that cycle, until some arc flow is
zeroed

— Zeroed arc exits the tree/basis
e [f all b; are integer, basic (or optimal) f is integer
o If all ¢;; are integer, basic (or optimal) p is integer
e How to start the algorithm?

— Assume single source, single sink
— Auxiliary arc from source to sink, with high cost.

— Let that arc be in the tree, all flow goes through it.

The capacitated case

e Tree solution:
Pick a tree. For (¢,7) € T, set f;; either to 0 or to u;;

e Calculate p; and ¢;; as before.

o lf¢;; < 0and f;; = 0, push flow around the cycle, in the
direction of (1, 7).

o If¢;; > 0 and f;; = w;j, push flow in the opposite direction.

Optimality conditions

e Def: Pushing flow around a cycle:
fij — fij + ¢ for forward arcs
fij — fi; — 6 for backward arcs
(flow conservation equation is respected)

e Def: A cycle is unsaturated if we can push some flow
around it.
fij < uy; for forward arcs
fi; > 0 for backward arcs

e Def: Cost of a cycle:
Sum of the ¢;;, with minus sign for backward arcs.

e Theorem: Optimal flow iff there is no unsaturated cycle
with negative cost.

e [asy direction:
If 4 negative cost unsaturated cycle,
can push some flow along that cycle
cost reduction
flow is not optimal

e Converse direction: proof is more involved

Negative Cost Cycle Algorithm

e Algorithm:
1. Start with a feasible flow f.
2. Search for an unsaturated cycle C' with negative cost.
3. If none, stop (optimal)
4. Else, push as much flow as possible along C
(if can push an infinite amount, optimal cost is —o0)

e Assume b; integer, and u;; integer or infinite
Assume integer initial flow

e Integrality maintained throughout

e If the optimal cost is finite,
terminates with integer optimal solution

e In noninteger case, not guaranteed to terminate!
— Number of iterations can be large

e Algorithm can be made efficient under special rules
for choosing among negative cost cycles

e Searching for negative cost cycles can be done in O(n?) time

The Maximum Flow problem

e Given capacities u;;; no costs
maximize flow from source s to destination ¢

e Equivalent min-cost flow problem:

Ct3=_1 utS=OO
-

e Negative cost cycle:
artificial arc and “unsaturated” path from s to ¢
(“augmenting path”)
along which flow can be pushed

Augmenting paths

e Arcs that can be used:

— can use arc (¢, j) in forward direction if fj; < u;;

— can use arc (%, 7) in backward direction if f;; > 0

(all capacities are 1)

flow pushed : min {(Z{%lgF(uw fii); mlé"lB f@]}

e Ford-Fulkerson algorithm:
search for augmenting path and push flow

Searching for an augmenting path

e Labeled node i: have determined that Jpath from s to i,
with
fij < w;; on forward arcs
fii > 0 on backard arcs

e Scanned node 7: have looked at all neighbors of ¢ and
attempted to label them

e Labeling algorithm:

— Initialize: label s
— select labeled but unscanned node
— scan it, and label its neighbors, if possible

— repeat
e If ¢ labeled, have found augmenting path

e If stuck, with ¢ unlabeled, no augmenting path exists.

e Work: O(m)

Labeling algorithm example

Comments on overall algorithm

e Not guaranteed to terminate!
e Works with primal feasible solutions

e Max-flow is infinite iff 4 path from s to ¢ with infinite ca-
pacities
(check ahead of time)

e Guaranteed to terminate if:
max-flow is finite and u;; are all integer (or rational)

e Complexity (in integer case): [let U = max u;;]

nU - O(m)

Max-flow min-cut theorem

eCut S:se€S5,t¢S.

cut capacity = C'(S) = > Uij
{(1.))eA | i€S, j¢S}

e max-flow < ming C'(.5)
e Start algorithm with optimal flow.
e Fails to find augmenting path, algorithm terminates

e Consider set S of labeled nodes

fij = wij, Je =0
current flow= capacity C(S) of this cut

e Therefore:
current flow is optimal
this cut is minimal
max-flow value = min-cut capacity

e Smacks of duality

Comments

e Size of problem: O(mlogU)
e Ford-Fulkerson algorithm: O(mnU): “exponential”
e Can be modified to polunomial(m, n,log U) (Exercise 7.25)

e Better algorithms:
look for “shortest” augmenting path
augment flow on many paths simultaneously
ete. ete.
can get complexity O(mmn logn)

