Outline:

- Finish uncapacitated simplex method
- Negative cost cycle algorithm
- The max-flow problem
- Max-flow min-cut theorem

Uncapacitated Networks: Basic primal and dual solutions

- Flow conservation constraints Af = b (rows ↔ nodes; columns ↔ arcs)
- delete last row: $\tilde{\mathbf{A}}\mathbf{f} = \tilde{\mathbf{b}}$
- basic (feasible) solution \leftrightarrow (feasible) tree solution n-1 basic variables: flows that lie on the tree (easy to calculate given the tree)
- Calculation of dual basic solution \mathbf{p} (one variable per node)

$$\begin{bmatrix} p_1 \cdots p_{n-1} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}}_{B(1)} & \cdots & \tilde{\mathbf{A}}_{B(n-1)} \\ | & | \end{bmatrix} = \begin{bmatrix} c_{B(1)} \cdots c_{B(n-1)} \end{bmatrix}$$

$$\begin{bmatrix} p_1 \cdots p_{n-1} & 0 \end{bmatrix} \begin{bmatrix} | & | & | \\ \mathbf{A}_{B(1)} & \cdots & \mathbf{A}_{B(n-1)} \\ | & | \end{bmatrix} = \begin{bmatrix} c_{B(1)} \cdots c_{B(n-1)} \end{bmatrix}$$

i.e., use original columns (dimension n), but set $p_n = 0$

- if $(i, j) \in \text{tree}$, i.e., f_{ij} is basic, $p_i p_j = c_{ij}$ solve by starting at "root" node n, move down the tree
- $p_i p_j = \text{cost of path from } i \text{ to } j \text{ along the tree}$
- for (i, j) outside the tree: $\overline{c}_{ij} = c_{ij} - (p_i - p_j) = \text{cost of cycle created by arc } (i, j).$

Uncapacitated Network Simplex Algorithm

• Algorithm:

Start with a tree T, and flows f_{ij} , $(i, j) \in T$

$$-p_n = 0$$
; solve $p_i - p_j = c_{ij}, (i, j) \in T$

- For $(i, j) \notin T$, let $\overline{c}_{ij} = c_{ij} (p_i p_j)$
- If all $\overline{c}_{ij} \ge 0$, then optimal, and the p_i are a dual optimal solution
- Else pick (i, j) with $\overline{c}_{ij} < 0$
- Consider cycle created by arc (i, j)
- "Push" flow around that cycle, until some arc flow is zeroed
- Zeroed arc exits the tree/basis
- If all b_i are integer, basic (or optimal) **f** is integer
- If all c_{ij} are integer, basic (or optimal) **p** is integer
- How to start the algorithm?
 - Assume single source, single sink
 - Auxiliary arc from source to sink, with high cost.
 - Let that arc be in the tree, all flow goes through it.

The capacitated case

- Tree solution: Pick a tree. For $(i, j) \in T$, set f_{ij} either to 0 or to u_{ij}
- Calculate p_i and \overline{c}_{ij} as before.
- If $\overline{c}_{ij} < 0$ and $f_{ij} = 0$, push flow around the cycle, in the direction of (i, j).
- If $\overline{c}_{ij} > 0$ and $f_{ij} = u_{ij}$, push flow in the opposite direction.

Optimality conditions

- **Def: Pushing** flow around a cycle: $f_{ij} \rightarrow f_{ij} + \delta$ for forward arcs $f_{ij} \rightarrow f_{ij} - \delta$ for backward arcs (flow conservation equation is respected)
- **Def:** A cycle is **unsaturated** if we can push some flow around it.

 $f_{ij} < u_{ij}$ for forward arcs $f_{ij} > 0$ for backward arcs

- **Def: Cost** of a cycle: Sum of the c_{ij} , with minus sign for backward arcs.
- **Theorem:** Optimal flow iff there is no unsaturated cycle with negative cost.
- Easy direction:
 If ∃ negative cost unsaturated cycle, can push some flow along that cycle cost reduction
 flow is not optimal
- Converse direction: proof is more involved

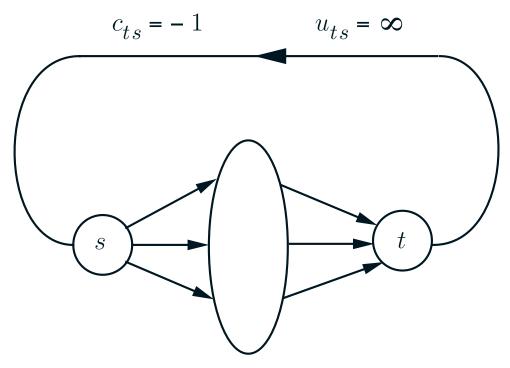
Negative Cost Cycle Algorithm

• Algorithm:

- **1.** Start with a feasible flow \mathbf{f} .
- **2.** Search for an unsaturated cycle C with negative cost.
- **3.** If none, stop (optimal)
- 4. Else, push as much flow as possible along C
- (if can push an infinite amount, optimal cost is $-\infty$)
- Assume b_i integer, and u_{ij} integer or infinite Assume integer initial flow
- Integrality maintained throughout
- If the optimal cost is finite, terminates with integer optimal solution
- In noninteger case, not guaranteed to terminate!
 - Number of iterations can be large
- Algorithm can be made efficient under special rules for choosing among negative cost cycles
- Searching for negative cost cycles can be done in $O(n^3)$ time

The Maximum Flow problem

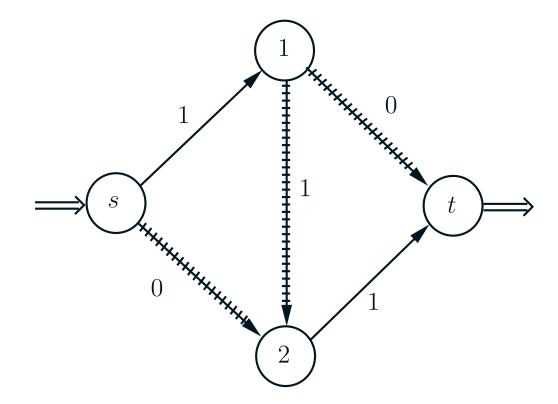
- Given capacities u_{ij} ; no costs maximize flow from source s to destination t
- Equivalent min-cost flow problem:



Negative cost cycle: artificial arc and "unsaturated" path from s to t ("augmenting path") along which flow can be pushed

Augmenting paths

- Arcs that can be used:
 - can use arc (i, j) in forward direction if $f_{ij} < u_{ij}$
 - can use arc (i, j) in backward direction if $f_{ij} > 0$



(all capacities are 1)

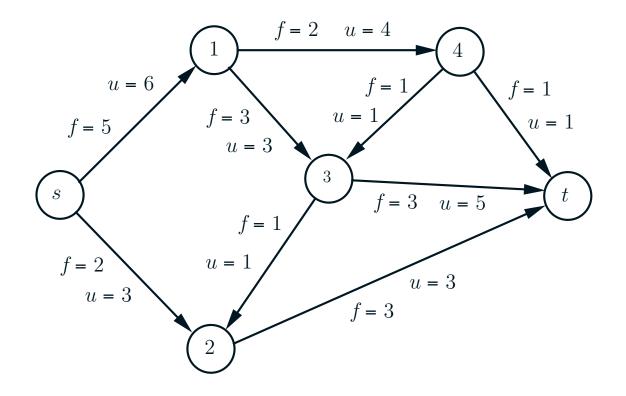
flow pushed :
$$\min\left\{\min_{(i,j)\in F}(u_{ij}-f_{ij}), \min_{(i,j)\in B}f_{ij}\right\}$$

• Ford-Fulkerson algorithm: search for augmenting path and push flow

Searching for an augmenting path

- Labeled node i: have determined that \exists path from s to i, with
 - $f_{ij} < u_{ij}$ on forward arcs $f_{ij} > 0$ on backard arcs
- Scanned node i: have looked at all neighbors of i and attempted to label them
- Labeling algorithm:
 - Initialize: label s
 - select labeled but unscanned node
 - scan it, and label its neighbors, if possible
 - repeat
- If t labeled, have found augmenting path
- \bullet If stuck, with t unlabeled, no augmenting path exists.
- Work: O(m)

Labeling algorithm example



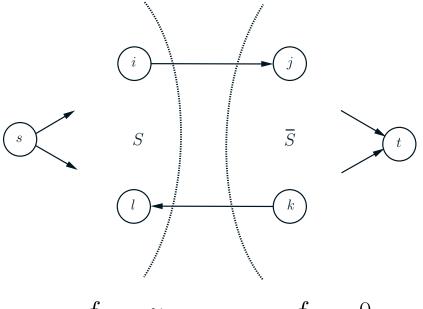
Comments on overall algorithm

- Not guaranteed to terminate!
- Works with primal feasible solutions
- Max-flow is infinite iff ∃ path from s to t with infinite capacities (check ahead of time)
- Guaranteed to terminate if: max-flow is finite and u_{ij} are all integer (or rational)
- Complexity (in integer case): [let $U = \max u_{ij}$]

 $nU\cdot O(m)$

Max-flow min-cut theorem

- Cut S: $s \in S, t \notin S$. cut capacity = $C(S) = \sum_{\{(i,j) \in \mathcal{A} \mid i \in S, j \notin S\}} u_{ij}$
- max-flow $\leq \min_S C(S)$
- Start algorithm with optimal flow.
- Fails to find augmenting path, algorithm terminates
- Consider set S of labeled nodes



 $f_{ij} = u_{ij}, \qquad \qquad f_{kl} = 0$

current flow= capacity C(S) of this cut

- Therefore:
 - current flow is optimal this cut is minimal max-flow value = min-cut capacity
- Smacks of duality

Comments

- Size of problem: $O(m\log U)$
- Ford-Fulkerson algorithm: O(mnU): "exponential"
- Can be modified to polunomial $(m, n, \log U)$ (Exercise 7.25)
- Better algorithms: look for "shortest" augmenting path augment flow on many paths simultaneously etc. etc.

can get complexity $O(mn \log n)$