MASSACHUSETTS	S INSTITUTE OF TECHNOLOGY
Fall 2002	6.251/15.081
Quiz 3	12/11/02 (2:35-3:55 p.m., in class)

Problem 1. (25 points)

Consider the assignment problem with arc costs c_{ij} as indicated in Figure 1 and suppose that the projects' prices (rewards) are also as shown.

Figure 1: Assignment scenario for problem 1.

- (a) Construct a partial assignment involving only persons 2 and 4 that satisfies ϵ -complementary slackness, for $\epsilon = 1/4$.
- (b) Starting from these prices and this partial assignment, and with $\epsilon = 1/4$, carry out one iteration of the auction algorithm.

Problem 2. (25 points)

We are given an undirected graph with n nodes, and three possible labels. We are interested in deciding whether we can associate a label to each node, so that any two nodes connected by an edge have different labels. Formulate an integer linear programming problem which is feasible if and only if such a labeling is possible.

Problem 3. (25 points)

Consider an uncapacitated network flow problem with integer data (i.e., the supplies b_i and the arc costs c_{ij} are all integer). Suppose that we have a nondegenerate basic feasible solution **f** and a dual feasible solution **p** that satisfies satisfy ϵ -complementary slackness:

if
$$f_{ij} > 0$$
, then $p_i \ge c_{ij} + p_j - \epsilon$.

Assume that $\epsilon < 1/(n-1)$. Show that **f** is optimal. [*Hint:* Say something about the cost of interesting cycles; alternatively, bound the cost of **f**.]

Problem 4. (25 points) Let

$$S_{\text{IP}} = \{ \mathbf{x} \text{ integer } | \ \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$$

Also, given a vector \mathbf{p} , let

$$S(\mathbf{p}) = {\mathbf{x} \mid \lfloor \mathbf{p}' \mathbf{A} \rfloor \mathbf{x} \le \lfloor \mathbf{p}' \mathbf{b} \rfloor }.$$

(a) Show that if $\mathbf{p} \geq \mathbf{0}$, then

$$S_{\mathrm{IP}} \subseteq S(\mathbf{p}).$$

(b) Assume that the set $\{Ax \leq b, x \text{ integer}\}$ is finite. Let

$$z_D = \max_{\mathbf{q} \ge \mathbf{0}} \quad \min\{\mathbf{c}'\mathbf{x} - \mathbf{q}'\mathbf{x} \mid \mathbf{A}\mathbf{x} \le \mathbf{b}, \mathbf{x} \text{ integer}\},$$

be the value of the Lagrangean dual, if we relax and dualize the constraints $\mathbf{x} \geq \mathbf{0}.$ Also, let

$$z_P = \min_{\substack{\mathbf{x} \\ \text{subject to}}} \mathbf{c'x}$$

subject to $\lfloor \mathbf{p'A} \rfloor \mathbf{x} \leq \lfloor \mathbf{p'b} \rfloor, \quad \forall \mathbf{p} \geq \mathbf{0}$
 $\mathbf{x} > \mathbf{0}.$

Show that $z_P \leq z_D$.

Note: The optimization problem that defines z_P involves infinitely many constraints. It turns out that these constraints define a polyhedron, but the problem can be solved without appealing to this fact.