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Problem 1.

(a) There exists a maximum flow of value +∞ if and only if there exists an
s− t augmenting path P with δ (P ) = ∞, where s and t are the source
and destination nodes of the graph, respectively. Consider a variant
of the labeling algorithm whereby, instead of accepting unsaturated
arcs when we scan each node, we only accept forward arcs with infinite
capacity. It is clear that this modified algorithm will find an s− t path
of infinite capacity if and only if such a path exists.

(b) Since the B matrix in an uncapacitated network flow problem is the
incidence matrix (less the constraint from node n) of a (directed) tree,
we know that we can always permute the rows of B to make a lower
triangular matrix with diagonal entries equal to 1 or −1. It is then
clear from Cramer’s rule that such a matrix has determinant 1 or −1,
and therefore its inverse will be integral.

(c) An extreme ray for any standard form problem will be an extreme ray
of the recession cone C =

{
x ∈ Rn

+ | Ax = 0
}
. In the case of network

flow problems, A is the incidence matrix, so we can picture the extreme
rays of C in this case to be cycles in the graph (Ax = 0) such that all
the arcs point in the same direction (x ≥ 0).

Problem 2.
We construct a maximum flow graph G in the following way. We introduce
nodes c1, . . . , cn for each contractor, and connect a directed arc of unit ca-
pacity from s to each of these nodes. We also introduce nodes p1, . . . , pn for
each project, and connect a directed arc of unit capacity from each pi to t.
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Finally, we introduce an infinite capacity arc from each contractor node ci to
each project node in A (i). Let C be the set of contractor nodes, and P be
the set of project nodes, respectively. It is clear that there exists a matching
in which each project gets assigned if and only if the maximum flow value is
n.

Consider a minimum cut R in G, with s ∈ R, t /∈ R. Denote the set of
project nodes not in R by S, i.e., S = P ∩ (R \ P ). We claim that the set V
of contractor nodes not in R is given by {i ∈ C | A(i) ∩ S 6= ∅}. First, it is
clear that any node in {i ∈ C | A(i) ∩ S 6= ∅} must be included in V , since
otherwise the cut would cross an outward infinite capacity arc. Conversely,
assume we have a node j not in {i ∈ C | A(i) ∩ S 6= ∅} but in V . By adding
j to R, we decrease the capacity of the cut by 1, which contradicts that R is
minimum. So we have proved that the set V of contractor nodes not in R is
given by V = {i ∈ C | A(i) ∩ S 6= ∅}.

Now, the capacity of this cut is given by δ (R) = |V | + n − |S|. If there
does not exist a matching in which each project is assigned, then we know
the maximum flow value, and hence, the minimum cut capacity, is strictly
less than n. This implies that |V | < |S|, and from the derivation of V from
the preceding paragraph, we have that S is undersubscribed. Conversely, if
there exists a set S which is undersubscribed, then the cut derived by S and
the corresponding V satisfy δ (R) < n, which implies that the maximum flow
value is also less than n, so there does not exist a matching in which each
project is assigned.

Problem 3.

(a) λ1
1 = λ2

1 = 1/2 and λ1
2 = 1 satisfy the flow conservation constraints as

well as the coupling constraint on f23.

(b) We have three basic variables, so there must be three constraints in the
basis matrix. In particular, we have the single coupling constraint and
the two convexity constraints (one for each subproblem). Plugging in
the values of the extreme points into the coupling constraint, we have
the basis B as

B =




4 0 −2
1 1 0
0 0 1


 .
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(c) We have [q r1 r2] = pT , where p = (B−1)
T

cB is the vector of dual
variables from the problem. Plugging in the given extreme points and
noting the cost coefficients for each of the graphs, we have that c1

1 = 20,
c2
1 = 12, and c1

2 = 0. Now solving the system for p, we find q = 2,
r1 = 12, and r2 = 4.

(d) We write the second subproblem as

minimize
(
c2

T − qD2

)
f

subject to Af = b

f ≥ 0,

where A is the truncated incidence matrix of network 2, b are the
supplies of network 2, and D2 = [0 0 0 − 1] (from the coupling con-
straint). In terms of numbers, the second subproblem is

minimize
[
1 0 0 2

]
f

subject to

[
1 1 −1 0
0 −1 1 1

]
f =

[
1
1

]

f ≥ 0.

It is not difficult to solve this by inspection. We look for an optimal
basis. Clearly, columns 2 and 3 are linearly dependent, so they cannot
form a basis. Also, column 4 has a high cost coefficient, so we consider
{1, 2} or {1, 3} for the basis. The former is infeasible, but {1, 3} is fea-
sible and in fact optimal, with f = [f13 f12 f21 f23]

T = [2 0 1 0]. Since
the cost of this solution is less than r2 = 4, we bring this new extreme
point f 2

2 into the master problem.

It is not hard to see that the next solution to the master problem
will have λ1

1 = 0, λ2
1 = 1, λ1

2 = 0, and λ2
2 = 1 (so it is degenerate). The

new arc flows now read 


f13

f12

f23


 =




4
0
0




for network 1, and 


f13

f12

f21

f23


 =




2
0
1
0
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for network 2.
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