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Problem 1: Critical Path Timing Analysis 
 
From Lecture 9, the critical path is: 

 
Figure 1. Critical path for the carry bypass adder 

 
For each 4-bit carry bypass adder the critical path for generation of the carry out bit must go 
through one P, G unit (1 unit) and four full adders (4 units) for a total of 5 units. 
 
Each BP signal BP, BP2, BP3, etc… is generated in parallel and equally affects the critical path 
so we only need to add the contribution of generating the carry out bit for a 4-bit adder once. 
 
For the critical path computation we consider the path originating from the leftmost 4-bit adder 
because it must bypass the most 4-bit adder units (i.e. travel through the most 2:1 multiplexers). 
For the case shown above we pass through three 2:1 multiplexers (3 units). 
 
Finally, the critical path is dependent on the computation of the most significant sum bit (S15) 
which is a function of the propagate and carry-in bit (S15 = P15 xor Ci,15). Ci,15 is a function of the 
final 4-bit adder so the critical path must pass through an additional 4 full adders (4 units). 
 
Adding up the critical path we have 5 + 3 + 4 = 12 units. In summary, that is 5 units for the first 
4-bit adder, 3 units for the 2:1 multiplexers, and 4 units for the final sum bit, which is a function 
of Ci,15. 
 
 
Problem 2: Twos Complement Multiplier 
 
a) One solution is to conditionally convert x and y from 2’s complement to sign magnitude, 
multiply the two results, and then conditionally convert back. The condition can be performed 
using an XOR of each bit of the signal with the MSB of the signal, and then adding the MSB to 
the signal as shown below. 
  

 
 
module mult8x8(x,y,z); 
input [7:0] x,y; 
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output [15:0] z; 
 
wire sign; 
wire [7:0] a,b; 
wire [15:0] c; 
 
assign a = ({8{x[7]}} ^ x) + x[7]; 
assign b = ({8{y[7]}} ^ y) + y[7]; 
assign c = a*b; 
assign sign = x[7]^y[7]; 
assign z = ({16{sign}} ^ c) + sign;  
 
endmodule 

 
We can test the multiplier by running it on a range of input values. You then take a look at the 
result and see if the answers are correct. One possible test bench could be: 
 
`timescale 1ns / 1ps 
 
module mult8x8_tb; 
   
  reg [7:0] x; 
  reg [7:0] y; 
  wire [15:0] z; 
   
// uncomment the module you wish to test 
// mult8x8 m8x8 (x,y,z); 
// signed_mult8x8 m8x8(x,y,z); 
 
  integer    i; 
  integer    j; 
     
  initial 
    begin 
      #100; 
      x = 0; 
      y = 0; 
       
      for (i = 0; i < 16; i = i + 1) 
 begin 
   x = i; 
   for (j = -8; j < 8; j = j + 1) 
     begin 
       y = j; 
       #50; 
       $display("%d * %d = %d",x, y, z); 
     end 
 end 
      
      $finish; 
    end 
 
endmodule 
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Here is the corresponding waveform: 

 
Figure 2. Waveform for mult8x8_tb 

 
 
b) Using the signed modifier only works in some implementations of Verilog. Luckily, the Xilinx 
tools have incorporated this functionality. 
 
module signed_mult8x8(x,y,z); 
  input signed [7:0] x,y; 
  output signed [15:0] z; 
 
  assign z = x * y; 
 
endmodule 
 
 
Problem 3: Generating Block RAMs 
 
a) Here are the steps needed to generate a 16x16 BRAM. 
 
Right click in the “Sources” window and select the “New Source…” option. This will open a new 
window where you can name your module and say what kind of file you would like it to be. 

 
Figure 3. New Source window 

 
Click next to open up the core selection window and choose “Memories & Storage 
Elements/RAMs & ROMs/Single Port Block Memory v6.2”. 
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Figure 4. Core selection window 

 
Click next, and then click finish. The core generator window will now appear. The default 
settings will do for this application. You only need to change the width and depth to be 16 
and 16 respectively. 

 
Figure 5. Core generation window 

 
Click the button that says “Generate”. The module that you created should now appear in 
your “Sources ” window. 

 
Figure 6. Sources in Project window with the generated core 

 
b) After completing part a, you can now write a testbench as you normally would. Here is one 
possible testbench that writes 0x6363 to location 5, reads from location 12, and then reads 
from location 5 to show that the data was written correctly. 
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Figure 7. Screenshot of 16x16 BRAM testbench 

 
module test_mem_v; 
 
 // Inputs 
 reg [3:0] addr; 
 reg clk; 
 reg [15:0] din; 
 reg we; 
 
 // Outputs 
 wire [15:0] dout; 
 
// Instantiate the Unit Under Test (UUT) 
 bram_16x16 uut ( 
  .addr(addr),  
  .clk(clk),  
  .din(din),  
  .dout(dout),  
  .we(we) 
 ); 
 
 always #5 clk <= ~clk; 
 initial begin 
  // Initialize Inputs 
  addr = 0; 
  clk = 0; 
  din = 0; 
  we = 0; 
 
  // Wait 100 ns for global reset to finish 
  #100; 
  // falling edge at multiples of 10, 
  // therefore the values below will be 
  // settled by the time the rising edge comes 
  addr = 4'h5; 
  din = 16'h6363; 
  we = 1'b1; 
  #10; 
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// we've satisfied the hold time so 
  // _we_ can be deasserted and the address 
  // can be modified 
  we = 0; 
  addr = 4'hc; 
  din = 16'h3c3c; 
  #10; 
  // check to see if our data was written 
  addr = 4'h5; 
 
 end 
       
endmodule 
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Problem 4: Introduction to Video 
 
a) Here is the code for a video controller: 
 
// This module provides control signals to the ADV7125 
// such that the resolution is 640x480 and the refresh 
// rate is 75Hz. 
 
// hsync is active low: high for 640 pixels of active video, 
//           high for 16 pixels of front porch, 
//     low for 96 pixels of hsync, 
//   high for 48 pixels of back porch 
 
// vsync is active low: high for 480 lines of active video, 
//           high for 11 lines of front porch, 
//   low for 2 lines of vsync, 
//   high for 32 lines of back porch 
 
module vga (pixel_clock, reset, hsync, vsync, sync_b, 
     blank_b, pixel_count, line_count); 
   
  input pixel_clock; // 31.5 MHz pixel clock 
  input reset; // system reset 
  output hsync; // horizontal sync 
  output vsync; // vertical sync 
  output sync_b; // hardwired to Vdd 
  output blank_b; // composite blank 
  output [9:0] pixel_count; // number of the current pixel 
  output [9:0] line_count; // number of the current line 
  // 640x480 75Hz parameters 
   
  parameter    PIXELS = 800; 
  parameter    LINES = 525; 
  parameter    HACTIVE_VIDEO = 640; 
  parameter    HFRONT_PORCH = 16; 
  parameter    HSYNC_PERIOD = 96; 
  parameter    HBACK_PORCH = 48; 
  parameter    VACTIVE_VIDEO = 480; 
  parameter    VFRONT_PORCH = 11; 
  parameter    VSYNC_PERIOD = 2; 
  parameter    VBACK_PORCH = 32; 
 
  // current pixel count 
  reg [9:0] pixel_count = 10'b0; 
  reg [9:0] line_count = 10'b0; 
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  // registered outputs 
  reg      hsync = 1'b1; 
  reg      vsync = 1'b1; 
  reg      blank_b = 1'b1; 
  wire      sync_b; // connected to Vdd 
   
  wire pixel_clock; 
  wire [9:0] next_pixel_count; 
  wire [9:0] next_line_count; 
 
  always @ (posedge pixel_clock) 
    begin 
      if (reset) 
 begin 
   pixel_count <= 10'b0; 
   line_count <= 10'b0; 
   hsync <= 1'b1; 
   vsync <= 1'b1; 
   blank_b <= 1'b1; 
 end 
      else 
 begin 
 
   pixel_count <= next_pixel_count; 
   line_count <= next_line_count; 
 
   hsync <=  

(next_pixel_count < HACTIVE_VIDEO + HFRONT_PORCH) | 
  (next_pixel_count >= HACTIVE_VIDEO+HFRONT_PORCH+ 

     HSYNC_PERIOD); 
   
   
   vsync <=  

(next_line_count < VACTIVE_VIDEO+VFRONT_PORCH) | 
  (next_line_count >= VACTIVE_VIDEO+VFRONT_PORCH+ 
             VSYNC_PERIOD); 
 
   // this is the and of hblank and vblank 
   blank_b <=  

(next_pixel_count < HACTIVE_VIDEO) & 
  (next_line_count < VACTIVE_VIDEO); 
 
    
 end 
    end 
 
  // next state is computed with combinational logic 
  assign next_pixel_count = (pixel_count == PIXELS-1) ?  

 10'h000 : pixel_count + 1'b1; 
 

  assign next_line_count = (pixel_count == PIXELS-1) ?  
       (line_count == LINES-1) ? 10'h000 :  
     line_count + 1'b1 : line_count; 
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  // since we are providing hsync and vsync to the display, we 
  // can hardwire composite sync to Vdd. 
  assign sync_b = 1'b1; 
   
endmodule 
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b) Here is a screenshot of what your waveform should look like 
 

 
Figure 8. VGA testbench waveform 

 
The verilog code that was used to produce this waveform and test the VGA module is this: 
 
`timescale 1ns / 1ps 
module vga_tb_v; 
 
 // Inputs 
 reg pixel_clock; 
 reg reset; 
 
  

// Outputs 
 wire hsync; 
 wire vsync; 
 wire sync_b; 
 wire blank_b; 
 wire [9:0] pixel_count; 
 wire [9:0] line_count; 
 
 // Instantiate the Unit Under Test (UUT) 
 vga uut ( 
  .pixel_clock(pixel_clock),  
  .reset(reset),  
  .hsync(hsync),  
  .vsync(vsync),  
  .sync_b(sync_b),  
  .blank_b(blank_b),  
  .pixel_count(pixel_count),  
  .line_count(line_count) 
 ); 
 // define smaller parameters 
 // so that simulation runs in a 
 // reasonable amount of time 
 defparam    uut.PIXELS = 18; 
   defparam    uut.LINES = 11; 
   defparam    uut.HACTIVE_VIDEO = 10; 
   defparam    uut.HFRONT_PORCH = 2; 
   defparam    uut.HSYNC_PERIOD = 4; 
   defparam    uut.HBACK_PORCH = 2; 
   defparam    uut.VACTIVE_VIDEO = 3; 
   defparam    uut.VFRONT_PORCH = 3; 
   defparam    uut.VSYNC_PERIOD = 2; 
   defparam    uut.VBACK_PORCH = 3; 
 
 always #5 pixel_clock <= ~pixel_clock; 
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 initial begin 
  // Initialize Inputs 
  pixel_clock = 0; 
  reset = 0; 
 
  // Wait 100 ns for global reset to finish 
  #100; 
       #5; 
  reset = 1; 
  #10; 
  reset = 0; 
  #2000; 
   
 end 
       
endmodule
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c) There are multiple ways to implement the checkerboard pattern. You can count how many 
lines and pixels have occurred for example. If you divide the screen into 10 regions of 64x48 
pixels, then you can use the sixth bit of the pixel count to change the order that colors are output 
by the logic that generates the rows across the screen. The code below takes a different approach 
to demonstrate how you can use “for” loops to generate module descriptions for you. Here we 
just enumerate the regions where the select bit of a mux is a 1 or a 0, then use that bit to choose 
the output from the second set of logic. You might be able to do something like this to generate 
different on-screen parts of your pong lab. 
 
module checkerboard(pixel, line, red, green, blue); 
  input [9:0] pixel, line; 
  output [7:0] red, green, blue; 
   
  reg [7:0]    red, green, blue; 
  reg flip; 
   
  parameter    WIDTH = 640; 
  parameter    HEIGHT = 480; 
  parameter    ROW_HEIGHT = 96; 
  parameter    COL_WIDTH = 128; 
   
  integer      i,j; 
   
  always @ (pixel or line or flip) 
    begin 
       
      flip = 0; 
       
      for (j = 0; j < 10; j = j + 1) 
        begin 
          if ((j*ROW_HEIGHT/2 <= line) && 
              (line < (j+1)*ROW_HEIGHT/2)) 
          begin 
            flip = ((j%2)==0); 
          end 
        end 
       
      for (i = 0; i < 10; i = i + 1) 
        if ((i*COL_WIDTH/2 <= pixel) &&  
            (pixel < (i+1)*COL_WIDTH/2)) 
        begin 
          {red, green, blue} = flip ?  
                          (((i%2)==0) ? 24'h000000 : 24'hffffff): 
                          (((i%2)==0) ? 24'hffffff : 24'h000000); 
        end 
      end 
endmodule // checkerboard 


