
Lerer 1

Real-Time Raytracer
6.111 Final Project

Adam Lerer, Sam Gross

5/20/2007

Abstract

Raytracing is a 3D graphics algorithm used to generate extremely photorealistic images.
This paper describes a highly parallelized implementation of a raytracing algorithm
implemented in hardware on an FPGA. The system allows for rendering of planes and
spheres, and is able to render shadows and reflections. Objects are shaded using the
Phong shading model, which combines ambient, diffuse, and specular shading. Scenes
can include simple animation, and users are able to navigate in scenes by translation and
rotation.

Lerer 2

REAL-TIME RAYTRACER...1

Abstract ... 1

Overview ... 3

The Raytracer ... 4

Design Decisions ... 5
Number representation... 5
Vector Normalization & Division.. 6
I/O Buses to the Raytracing Units ... 6

Module Description / Implementation ... 10
Master Controller (MC)... 10
Vector Projection... 11
Vector Normalizer ... 11
SRAM Controller .. 12
VGA Controller ... 12
Raytracing Unit (RTU) .. 12
Intersector .. 13
Divider ... 15
Shader .. 15
Lights, Shapes, Materials... 16

Simulation & Testing ... 17

Results ... 18

Future Work ... 18

Acknowledgements... 19

Lerer 3

Overview

Figure 1: Raytraced Image of Three Spheres on a Plane

Raytracing is a 3D graphics algorithm used to generate extremely photorealistic images.

At each pixel of the screen, the raytracing algorithm finds the ray that goes from the

viewer’s eye through that pixel, and determines which objects in the scene that ray

intersects with. A color for the pixel is determined by properties of the closest intersected

object and the relationship between the intersection and the lights in the scene. To

calculate reflections, the algorithm adds the color of a ray reflected off the intersection

point to the color of the pixel.

 Raytracing is a very time-consuming algorithm to compute in software, because

the calculation of each pixel is independent and calculation of several intersection tests.

Lerer 4

Figure 2: The Principle of Raytracing (Wikipedia)
Each intersection test is also expensive, requiring several multiplications and often

expensive operations such as division or square-root. Therefore, real-time raytracing in

software is not yet realizable for complex scenes. However, the independence of each

pixel allows for easy parallelization, which makes it ideally suited for custom hardware.

The Raytracer

 This paper describes a custom digital system that performs raytracing, designed in

Verilog and synthesized on the Virtex2-6000 FPGA. The system is made up of several

independent raytracing units (RTUs), all controlled by a single master controller. A

raytracing unit is given a ray as input and returns the rendered color for that ray. The

raytracing unit determines the intersection of the ray with the objects in the scene, and for

each light assigns a color to the point based on Phong shading. The raytracing unit also

computes reflected rays in order to calculate colors caused by reflection.

 The master controller is responsible for calculating initial rays for each pixel on

the screen and assigning them to raytracing units. The master controller also synchronizes

the different raytracing unit, controls the camera position, and interfaces with the ZBT

SRAM controller, which stores the color at each pixel. The VGA controller also

Lerer 5

interfaces with the SRAM controller, requesting information to be displayed on the

640x480 VGA display.

Design Decisions

Certain design decisions greatly affected the success of the raytracer.

Number representation

One of the major decisions in the early stages of the project was the representation of

numbers in the raytracer. There were three main decisions to be made: (a) whether to use

fixed point or floating point numbers, (b) whether to use signed or unsigned numbers, and

(c) the bitwidth of each number.

Several considerations needed to be taken into account. First, we would need to use

several IP cores including fast multipliers, dividers, and square roots. These IP cores were

available for both fixed point and floating point numbers, but although they were

somewhat faster and more accurate for floating point, they took a lot more chip area.

Since we intended to put as many raytracing units on the chip as possible, this was a

major disadvantage. Also, debugging the raytracer with floating point numbers would be

much more difficult because it is very time-consuming to interpret floating point numbers

from their hexadecimal representation. Therefore, we chose to use a fixed-point

representation. The main downside to this approach is that numbers must be between a

fixed minimum and maximum; numbers that get too big “wrap around” and become

negative. This led to its fair share of ‘overflow’ bugs, but they were pretty easily

detectable on simulation and did not cause too many problems.

The choice of bit width was also very important. The most important consideration

was that we needed to perform a lot of multiplications of numbers, and the fast

Lerer 6

multipliers on the FPGA are 18x18 multipliers; therefore, if our numbers were more than

18 bits, they would require extra multipliers and have extra latency. At first, we were

worried that 18 bits would not afford enough accuracy after several operations, but by

keeping extra digits after operations like square root and truncating them afterwards, we

managed to keep the necessary precision.

We chose to use signed numbers because vectors required signed numbers.

Vector Normalization & Division

Vector normalization and division were very computationally difficult operations to

perform on the FPGA. An 18x18 divide took an extraordinary amount of space on the

FPGA compared to other operations, and vector normalization would require three

multiplications, a square root, and a division in the naïve implementation. For graphics

applications, which do not require perfect precision, a far better approach is to perform

successive approximations using Newton’s method. First, the inputs are bitshifted so that

they are between 0.5 and 1. In this interval, a good first approximation can be made using

linear interpolation. Then, about two approximations are made using Newton’s method,

and the final answer is bitshifted back by the appropriate amount. This allowed for a

division module with a latency of about 7 clock cycles and a very small LUT count, and a

pipelined vector normalizer for the master FSM using 12 multipliers and a throughput of

1.

I/O Buses to the Raytracing Units

One of our main goals in this project was to use as much of the FPGA as possible for

parallel computation. One of the problems with using a large percentage of the FPGA is

Lerer 7

routing. Luckily, the FPGA would be divided into several completely modular raytracing

units, but each of these units needed a 108-bit bus input bus for the initial ray and a 24-bit

output bus for the color. We were worried that having many 132-bit buses from the

master FSM would cause interconnect problems. Thus, we time multiplexed all the

raytracers onto one shared 132-bit bus. This was simple to do with the input bus, because

the master FSM simply asserted start on at most one raytracer per clock cycle, assigning

it the input ray currently on the bus. However, it is possible that more than one raytracing

unit could finish in one clock cycle, causing contention on the color bus. Therefore, the

raytracing units have an additional input, req_color, that asks an RTU that is done to

assert the color on the shared bus during the next clock cycle. Since the master controller

only asserts req_color for one RTU per clock cycle, contention is prevented.

Time multiplexing turned out to be very successful, as we were able to fill over 90%

of the available slices on the FPGA without interconnect problems.

Lerer 8

Figure 3: Raytracer Block Diagram

Lerer 9

Figure 4: Raytracing Unit Block Diagram

Lerer 10

Module Description / Implementation

This section describes the design and implementation of the modules in the raytracers. All

modules were designed in Verilog using the Xilinx ISE.

State transition diagrams for the finite state machine (FSM) modules were simplified to be

easier to read. In all FSMs, if reset is asserted, the FSM transitions to the IDLE state; this takes

precedence over all other signals. If a transition is not labeled, it is the default transition.

Master Controller (MC)

The master controller is primarily responsible for delegating work to individual raytracing

units and managing their results. The primary input to an RTU is a ray originating at the camera and

passing through a pixel on the screen. The master controller has to generate one such ray for each

pixel on the screen. In order to generate this ray, the master controller takes the camera data – vectors

representing position, direction, and orientation – and passes it to the vector projection module along

with the x and y coordinates of a pixel on the screen. The master controller passes the ray generated

by the vector projection module to an idle RTU and stores the x and y coordinates of the pixel being

processed by the RTU.

The master controller is also responsible for taking the color generated by the RTUs and

passing it to the SRAM controller. Color data is passed along a shared bus from the RTUs to the

master controller. An RTU only drives the bus when the master controller sets the RTU’s req_color

input high. The master controller sets the req_color input high on the lowest numbered RTU that is

finished. The master controller passes the x and y coordinates of the pixel and the color data to the

SRAM controller.

Lerer 11

Vector Projection

The vector projection module is responsible for calculating a normalized vector pointing from

the camera to a specified pixel on the screen. The camera’s direction and orientation is represented as

three vectors: forward, up, and right. The forward vector points in the positive z-direction in the

camera’s coordinate system. The up vector points in the positive y-direction and the right vector points

in the positive x-direction. The projection module scales the right vector by a factor of c1×(x –

WIDTH / 2), where c1 is a constant chosen beforehand to give the desired field of view. Similarly, the

up vector is scaled by a factor of c2×(y – HEIGHT / 2). The scaled up and right vectors are added to

the forward vector to create a vector pointing in the desired direction. The projection module finally

sends the vector through a pipelined vector normalizer.

Vector Normalizer

The vector normalizer module uses Newton’s method to compute an accurate approximation of

the reciprocal of the square root vector magnitude. After the magnitude is computed, normalizer bit-

shifts the sum of squares left so that it is between 0.5 and 1. A linear approximation is used for the

initial guess, since the function 1/sqrt(x) is nearly linear between 0.5 and 1. Newton’s method gives us

the approximation xn = xn-1× (1.5 – 0.5×k×xn-1
2) where x is the current guess and k is the original

number. We do two iterations using Newton’s method to get successively better approximations. If

we shifted the original number by j, we shift the answer left by floor(j/2) and then multiply by sqrt(2)

if j is odd. Altogether, the fully pipelined version of the normalizer has a latency of 10 clock cycles

and uses thirteen multipliers. The un-pipelined version has a latency of sixteen clock cycles and uses

one multiplier.

Lerer 12

SRAM Controller

The SRAM controller is responsible for interfacing with the ZBT SRAM on the labkit and

implementing a double buffer using page-flipping. The SRAM controller writes to one SRAM while

reading from the other. When the flip input is asserted, the controller switches buffers, reading from

the SRAM to which it was previously writing and vice versa. Since the data signal to the ZBT SRAM

should be delayed two clock cycles relative to the address, the controller passes the input data through

two registers before sending it to the SRAM.

VGA Controller

The VGA controller is nearly the same as the VGA controller used in Lab 4. The only

significant difference is that VGA controller used in the raytracer interfaces with the SRAM controller

instead of a hard-coded display field.

Raytracing Unit (RTU)

Figure 5: State Transition Diagram for the Raytracing Unit

Lerer 13

A raytracing unit is the main processing engine of the raytracer. The complete raytracing unit

consists of a control FSM, intersector and shader modules, and modules that contain the lights, shape,

and material data. The control FSM is responsible for delegating to and controlling the intersector and

shader modules, as well as computing the reflected ray from the camera off an object. When the start

input is asserted, the controller initializes by setting the current color to black, the current ray to the

passed eye ray, and the current depth to zero. The controller next delegates the task of finding an

intersection of an object in the scene with the current ray to the intersector module. If no intersection

is found, the process is finished – the current pixel will be colored black, which is the background

color. If an intersection is found by the intersector module, the control FSM next computes the

reflected eye ray by adding the normal scaled by a factor of 2×(normal · current ray) to the current ray.

After the reflected ray is computed, the control FSM loops through each light in the scene.

The control FSM first checks if an object blocks the path from the light to the point of intersection.

The control FSM does this by constructing a vector from the point of intersection to the light. This

vector is then normalized by an un-pipelined version of the vector normalizer. The control FSM uses

the intersector to check if there is an object between the light and the point of intersection. If there

exists such an object, the original object is shadowed and the contribution from the light is not

calculated. Otherwise, the control FSM uses the shader to compute the lighting contribution of the

specified light. The lighting contribution is added to the current color. In order to compute

reflections, this process is repeated with the depth incremented and the current ray set to the reflected

ray until the depth reaches five or no intersection is found. Lighting contributions from subsequent

reflections contribute by a factor of 2-depth which simulates a reflectivity of one-half.

Intersector

Lerer 14

Figure 6: State Transition Diagram for the Intersector

The intersector modules is responsible for computing whether the given ray intersects an object

in the scene and the point of intersection and object’s normal at that point for the closest intersection

any occur. The intersector contains within it the logic for calculating intersections of rays with both

spheres and planes, the two shapes supported by the raytracer. Although the shape and plane logic are

mostly independent, both are contained within the intersector in order to use the same multiply-

accumulators for both sphere and plane intersection tests.

Sphere and plane intersection tests require a series of multiplications and additions as well as

one “expensive” operation each. Since sphere intersection requires solving the quadratic equation,

Lerer 15

computing a square-root is necessary. The pipelined CORDIC coregen module is used to compute the

square-root. Plane intersection tests requires computing a division, which is done in the divider sub-

module.

 Both the plane and sphere intersection tests compute a distance, t, along the eye vector that an

intersection occurs. To get the point of intersection we simply scale the eye vector by a factor of t. To

compute the normal at the point of intersection on a sphere we subtract the origin of the sphere from

the point of intersection. We then normalize this vector by multiplying it by a factor of one over the

radius of the sphere – a pre-computed value stored in the shapes module. The normal of a plane is the

same at all points and is part of the data describing the plane.

Divider

We use Newton’s method to approximate the reciprocal of the denominator. We first

normalize the denominator by shifting it left until it is between 0.5 and 1, much like we do when

normalizing vectors. We use two iterations of Newton’s method to compute the reciprocal of the

denominator. We then multiply the reciprocal of the denominator by the numerator and shift left again

by the same amount to obtain the quotient. Since all numbers are required to be between 0.5 and 1 we

only perform a division operation if the numerator is less than the denominator.

Shader

The shader module computes the diffuse and specular contributions of a light. Diffuse shading

is computed by multiplying the object’s color by a factor of the dot product of the object’s normal and

the vector to the light. This is based on the fact that objects facing towards a light are brighter than

Lerer 16

objects angled away from a light. The specular component simulates the reflection of the light into the

Figure 7: State Transition Diagram for the Shader

viewer’s eye on shiny objects. We compute the specular component by taking the dot product

of the reflected eye vector and the vector from the object to the light. We then raise this value to the

sixteenth power to get a more focused bright spot. For example when the reflected eye vector is

incident with the vector to the light the dot product is one, since light is being reflected directly off the

object into the viewer’s eye. We sum the specular and diffuse component to get the contribution from

the specified light.

Lights, Shapes, Materials

The lights, shapes, and materials modules describe read-only memories (ROMs) containing the

positions of the lights and shapes and the geometry, color, and reflective properties of the shapes. The

modules are described in such a way so that they can be synthesized either to LUTs or block RAMs

depending on which resource the synthesizer decides is more available.

Lerer 17

Simulation & Testing

 Our first step, even before the project proposal, was to write a proof-of-concept software

program in Java that rendered the scene consisting of the three spheres and a plane. We used this

experience to decide what we could feasibly implement on an FPGA in the allotted time. The Java

program also proved immensely useful in testing and debugging, once we started using the same

fixed-point arithmetic in the Java program as we were in Verilog. We used ModelSim to run

behavioral simulations of the Verilog code. Since we knew that the Java program produced the

desired result, we were able to compare values from the Java program to the results from behavioral

simulations. For example, we often checked if the intersector module calculated exactly the same

point of intersection and normal vector as the Java program for a given input ray.

 Our most common source of error was integer overflows due to the use of fixed-point numbers.

Often, this caused visual artifacts, such as “bullet” holes appearing in spheres. Different fixed-point

operations required separate methods to detect overflows. Often we detected if the result of the

operation had a sign different than what was expected. For example, adding two positive numbers

should always yield a positive number, while adding two negative numbers always yields a negative

number. (Adding a positive number to a negative number never overflows.) When we detect an

overflow, we set the number to either the largest or smallest fixed-point number, depending on

whether the overflow is positive or negative. We intentionally decided to limit our range to between

−1 and 1 so that multiplication could not cause overflows.

 As we increased the number of RTUs, we encountered timing issues on the shared output data

bus from the RTUs to the master controller. This was caused by increased latency between the master

controller asserting req_color and the RTU asserting the color on the output bus. To solve this

problem, we registered req_color in the RTUs and asserted the color a clock cycle later. Since we

Lerer 18

were giving the RTU a new ray to work on during the same cycle it finishes, but only retrieving the

color from the RTU one cycle later, some buffering was required to accomplish this.

Results

The raytracer implementation met all of the design specifications and implemented almost all

of the features that were proposed in the design phase. Planes and spheres were both rendered and

shaded with ambient, diffuse, and specular shading under multiple lights. Reflections and shadows

were both rendered successfully. A small camera module allowed for zooming, panning, and rotating

the view being rendered, and simple animation of the scene was accomplished. A scene with three

spheres and a checkerboard plane were rendered at a frame rate of between 8 and 20 frames per

second, depending on the particular camera placement and the complexity of the area within the

camera view. This was accomplished by synthesizing 14 RTUs on the Virtex2-4000 running in

parallel, which consumed over 90% of the available slices on the FPGA.

Future Work

There are several directions in which this project could be taken in the future.

1. Modular scene information: In the current implementation, all scene information is stored

internally in the individual raytracing units. This allows for very efficient access of the scene data, but

it makes it very difficult to modify scenes efficiently after synthesis. In a more developed version of

this project, the scene information would be stored in block ram and accessible through an interface

module by the individual raytracers. Then, scene information could be loaded onto the block rams

after synthesis.

2. Shapes: For this project, we only implemented planes and spheres. However, most complex

scenes are made up of other shapes, triangles in particular. Future implementations should allow

Lerer 19

triangles to be rendered, because more complex shapes could then be rendered as amalgamations of

triangles.

3. Multiple FPGAs: Since only ray and color information needs to be transferred to the

different raytracing units, and since the architecture of the raytracer is so parallelizable, the design

could be extended to run on multiple FPGAs. There would be one ‘master’ FPGA and a number of

‘slave’ FPGAs made up of several raytracing units and a communication module that reported pixel

colors to the master FPGA. Theoretically, a linear speed increase in the number of FPGAs could be

realized.

4. Scene data structures: The main algorithmic problem with this implementation is that the

time to find an intersection grows linearly with the number of objects in the scene. This is not at all

practical for scenes with hundreds or thousands of objects. Software implementations of raytracers run

in time logarithmic in the number of objects, because they preprocess the objects into data structures,

keeping track of which objects occupy which part of the scene so they don’t have to be checked for

each ray. This would be quite complex to implement on an FPGA, because they are dynamic-memory

data structures, so it might be more effective to implement a small processor on the FPGA that handles

the data structures (scene-graphs / KD-trees) and interfaces with the various intersector modules,

giving them the appropriate objects to check for a given ray.

Acknowledgements

We would like to thank:

Javier Castro for being a great TA and working with us on all stages of the project.

Gim Hom and David Wentzloff for their help and advice.

Lerer 20

Anantha Chandrakasan for his support, and for warning us not to do MPEG encoding.

Nathan Ickes for providing us with a module to reduce clock skew to the ZBT SRAMs.

Ben Gelb for convincing us to take the class and his encouragement.

Igor Ginzburg for his wise words, “If you can’t write it in Java in a night, don’t do it.”

	Real-Time Raytracer
	Abstract
	Overview
	The Raytracer
	Design Decisions
	Number representation
	Vector Normalization & Division
	I/O Buses to the Raytracing Units

	Module Description / Implementation
	Master Controller (MC)
	Vector Projection
	Vector Normalizer
	SRAM Controller
	VGA Controller
	Raytracing Unit (RTU)
	Intersector
	Divider
	Shader
	Lights, Shapes, Materials

	Simulation & Testing
	Results
	Future Work
	Acknowledgements

