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m Building a functional multi-core computer
around the Beta processor (think 6.004 Labs on
steroids)

m Visually demonstrate the benefits of multiple
cores with “The Game of Life”

m Managing access to memory amongst many Beta
processors via a Memory Manager and possibly
data caches.



m A ‘zero-player’ game, user sets initial
state, then observes cellular evolution

m For each generation, a cell is either Zve
or dead based on its number of direct
neighbors in the previous generation

m Cells evolve indefinitely on an infinite
(in our case 240 x 240) grid

Image courtesy of Wikipedia
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The 2-Stage RISC Harvard Beta Processor
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m Using the 6.004 mini OS as a
starting point

m Software written in Assembly
and compiled by BSIM

m Python script creates software.v
file, which instantiates BRAM
and 1nitializes the memory to
the Beta machine code

BSim 1.
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WrChi )
CMPEQC(r3,0xA,r0)
BF(r0,PlWword)

Signal ( Prompt )
BR(PlWord)

PlBuf: STORAGE(100)
PlBufP: LONG(PlBuf)
Plstack: STORAGE(128)

Step2: BNE(Finished?, Step3)
Stepd: JMP(Stepl)

Stepd: 7

StepS5: Profitil!

P25tart:
LD{Count3, ro)
ADDC(r0,1,r0)
ST(r0,Count3)
¥ield()
BR(P25tart)

P25tack: STORAGE(128)

Count3: LONG(0)

Stepl: CMPEQ(CODe, A+, Finished?)
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m Short-answer: software

m Each CPU knows its ID

and total_CPU_Count | .. ._.%'7

m Game of Life:

4 steps per round Image courtesy of Wikipedia
- Compute all cells (all cpus read static image in Memory)
- Wait (for all to finish)
- Update all cells (refresh the static image)
- Wait
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Console Mode:

m Textual: 80 x 40 character display with prompt

m Interact with the Operating System
m Launch The Game of Life

Game Mode:

m The Game of Life cellular grid
m System performance statistics
m generations/second
m instructions/second

B processor usage



m Driven by a clock with twice the frequency of
the VGA pixel clock

m Allows memory access and data processing to occur
within each cycle of the pixel clock

m Reads display data from character and/or game
state RAMs

m 128 Character ROM









m Simple, yet computationally intense: Continually
calculate the number of neighbors for each of 50,000+ cells
to determine next generation

m Well suited for a multi-core system: Time needed to
compute each generation decreases linearly as more
processors are added

m Fun and interesting way to visually observe the benefits of
multiple processors



