Multi-Core [Beta
Computer

Christopher Celio & Matt Long
6.111 Spring 2007

m Building a functional multi-core computer
around the Beta processor (think 6.004 Labs on
steroids)

m Visually demonstrate the benefits of multiple
cores with “The Game of Life”

m Managing access to memory amongst many Beta
processors via a Memory Manager and possibly
data caches.

m A ‘zero-player’ game, user sets initial
state, then observes cellular evolution

m For each generation, a cell is either Zve
or dead based on its number of direct
neighbors in the previous generation

m Cells evolve indefinitely on an infinite
(in our case 240 x 240) grid

Image courtesy of Wikipedia

System Architecture

id

ia

mwd

mem_dﬂih

o -.:- I
| _kybd_data |

‘rrmse_ﬂaia Mouse Handler

The 2-Stage RISC Harvard Beta Processor

Program
Counter

_I

Instruction

Memory
D

[D-iEE

| ID-EXE IO—STHH

Control

Logic

®

v

Register

‘ Inst Fetch

‘ Execution

EAl
i Tﬁ

Adr RD

Data Memory

m Using the 6.004 mini OS as a
starting point

m Software written in Assembly
and compiled by BSIM

m Python script creates software.v
file, which instantiates BRAM
and 1nitializes the memory to
the Beta machine code

BSim 1.

LIEEEEEINCE

WrChi)
CMPEQC(r3,0xA,r0)
BF(r0,PlWword)

Signal (Prompt)
BR(PlWord)

PlBuf: STORAGE(100)
PlBufP: LONG(PlBuf)
Plstack: STORAGE(128)

Step2: BNE(Finished?, Step3)
Stepd: JMP(Stepl)

Stepd: 7

StepS5: Profitil!

P25tart:
LD{Count3, ro)
ADDC(r0,1,r0)
ST(r0,Count3)
¥ield()
BR(P25tart)

P25tack: STORAGE(128)

Count3: LONG(0)

Stepl: CMPEQ(CODe, A+, Finished?)

|

=

Was i
MIODE

it wa
ees A
Line |

Addre
Stack

UISER MODE Process 2: SimT1T connta
[LPPEEEEREREE e e e e e e e e e

| Amoth

Invok
retur

m Short-answer: software

m Each CPU knows its ID

and total_CPU_Count | .. ._.%'7

m Game of Life:

4 steps per round Image courtesy of Wikipedia
- Compute all cells (all cpus read static image in Memory)
- Wait (for all to finish)
- Update all cells (refresh the static image)
- Wait

char_code

osition
Data from i TO.
memo Monitor
Y cell _state
manager
cell_ num
char_code char_data

Console Mode:

m Textual: 80 x 40 character display with prompt

m Interact with the Operating System
m Launch The Game of Life

Game Mode:

m The Game of Life cellular grid
m System performance statistics
m generations/second
m instructions/second

B processor usage

m Driven by a clock with twice the frequency of
the VGA pixel clock

m Allows memory access and data processing to occur
within each cycle of the pixel clock

m Reads display data from character and/or game
state RAMs

m 128 Character ROM

m Simple, yet computationally intense: Continually
calculate the number of neighbors for each of 50,000+ cells
to determine next generation

m Well suited for a multi-core system: Time needed to
compute each generation decreases linearly as more
processors are added

m Fun and interesting way to visually observe the benefits of
multiple processors

