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Abstract  
 
This project attempted to design and implement a voice recognition system that would identify 
different users based on previously stored voice samples. Each user inputs audio samples with a 
keyword of his or her choice. This input was gathered but successful processing to extract 
meaningful spectral coefficients was not achieved. These coefficients were to be stored in a 
database for later comparison with future audio inputs.  Afterwards, the system had to capture an 
input from any user and match its spectral coefficients to all previously stored coefficients on the 
database, in order to identify the unknown speaker. Since the spectral coefficients were acquired 
adequately the system as a whole did not recognize anything, although we believe that modifying 
the system’s structure to decrease timing dependencies between the subsystems might make the 
implementation more feasible and less complex. 
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1.  Design Overview 
 
The overall design methodology for this project was to divide the system into two parts that 
could be done relatively independently. Unfortunately, the project ended up being more suitable 
for a three person subdivision and the remaining division had to be distributed as best as we 
could. Figure 1 shows the whole system’s block diagram. As can be seen the architecture used is 
fairly compact given the nature of the system. As a result of this desired compactness, system 
complexity was underestimated. In particular, the much desired modularity between our 
individual parts ended up being completely useless because the distance subsystem and the 
control unit should have been designed by the same person to facilitate posterior integration. 
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Figure 1. Block Diagram of the Voice Recognition System 
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2. Module Description and Implementation 
 
 
2.1 Audio Processing Subsystem (J) 

When the Control Unit asserts a signal requesting audio to be processed, this subsystem 
collects and processes real-time audio signals of approximately 6.8 seconds and determines their 
spectral coefficients. Figure 2 shows this subsystem’s block diagram. There are two main units 
within this subsystem: the Front End Processing Unit gathers the audio samples that will be 
processed, and the Back End Processing Unit performs the actual processing. 
 

 
 
 

Figure 2. Block Diagram for the Audio Processing Subsystem 
 

 
2.1.1 Front End Processing Unit 
 

This unit gathers samples of real-time audio from the AC’97 codec at a 48 kHz rate and 
serially outputs 160 time intervals of 2048 audio samples each whenever the Control Unit 
requests input audio to be processed. This implies that exactly 6.8267 seconds of audio input is 
processed each time this subsystem is requested to operate. An important aspect that should not 
be overlooked is that this unit handles two asynchronous clocks, namely, the AC’97 clock 
(12.288 MHz) and the system’s internal clock (31.5 MHz). The design advantages of this 
configuration will be explained below. Figure 3 shows the State Transition Diagram for this unit. 
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This module takes three inputs: the AC’97 clock, a reset signal, and a one-bit data signal 
(sdata_in) from the AC’97 containing relevant audio information. Naturally, this module outputs 
the 18-bit wide audio signal given by the AC’97. However, in order to get such signal the AC’97 
synchronization signal must be appropriately outputted to the codec. This would be enough if the 
AC’97 default were set to output the audio from its microphone ADC. However, the default state 
of the codec is set to mute all audio, thus an additional output (sdata_in) was properly driven to 
establish proper volume for our audio input. 

In addition to that, the serial data obtained from the AC’97 had to be appropriately read 
into corresponding 18-bit audio signals. This module implemented a shift register to read the 
appropriate 18 bits of each frame corresponding to the left audio channel and outputted that 
value at a 48 kHz frequency along with a 48 kHz 50 % duty cycle clock signal synchronous to 
the AC’97 clock that is used in the FIFO Buffer module. 
 
2.1.3 Audio Control module 
 

This module’s main purpose is to control the amount of time for which the audio input is 
processed by signaling the FIFO buffer when to write and read audio signals coming from the 
AC’97. Upon a start signal assertion from the Control Unit, the module enters a processing state 
in which initially the write signal is asserted to indicate the FIFO Buffer that it should accept 
input audio and a counter is initialized to 0. When the FIFO gets full, the counter is increased by 
1, the write signal is deasserted and the read signal is asserted. Therefore the FIFO Buffer 
unloads the 2048 samples that it had previously stored sequentially. When the FIFO asserts the 
empty signal, the module deasserts the read signal and asserts the write signal again, still 
remaining in the processing state. This cycle continues until the counter reaches 160. When this 
happens, the module returns to the IDLE state and is ready for a new processing request from the 
Control Unit. Figure shows the State Transition Diagram for this module, which closely follows 
the whole subsystem operation.  

 

 
Figure 3. State Transition Diagram for the Audio Control module 
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buffer. The read clock is the system’s 31.5 MHz clock, while the write clock is the 48 kHz signal 
generated by the AC’97 Controller module. This implies that the FIFO takes a lot longer to fill 
up than it takes to unload. The data to be written is the 18-bit wide output audio from the AC’97 
Controller module, which was designed to be synchronous to the positive edge of the 48 kHz 
signal. The data that is read is the 18-bit wide audio output of the Front End Processing Unit. 

This module takes audio samples from the AC’97 Controller module and stores them 
temporarily whenever the write signal is asserted by the Audio Controller module and it is not 
already full. Similarly, it outputs stored audio samples whenever the read signal from the Audio 
Control module is asserted and the buffer is not empty. Due to the different read and write 
clocks, data unloading is much faster than data loading. The main advantage of this design is that 
it guarantees that the output signal will be synchronized to the system’s clock, meaning that we 
solve the asynchronization issue. This in turn enables us to process the data using the system’s 
higher clock frequency so the output coefficients are computed faster and stay stable for a longer 
period of time, which makes possible our Distance Processor Unit configuration, discussed later.   
 
2.1.5 Back End Processing Unit 
 

After having established correct timing for our input audio, this unit processes the audio 
data by passing it through the serial network of modules, as shown in Figure 4. 
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Figure 4. Block Diagram of the Back End Processing Unit 
 

An important design aspect that can be inferred from the architecture is that modules are not 
arranged in a typical Major-Minor FSM structure. The implemented architecture is based on an 
all-Minor FSM structure. Such arrangement is not optimal in typical digital systems because it 
provides less modularity. However, a typical Major-Minor FSM setup for this particular 
application would not improve modularity either because each data processing sequence is the 
same. Each block’s function in Figure 4 is self-explanatory and detailed explanation of each is 
beyond the scope of this report, although it must be mentioned that all blocks were implemented 
manually, with the exception of the FFT which was obtained from a built-in CoreGen.  

Overall, this unit had 39 distinct modules (1 FFT, 1 power convertor, 19 filters, an 
accumulator, a log2 calculator, and 16 DCTs) and 75 total module instances (1 FFT, 1 power 
convertor, 19 filters, 19 accumulators, 19 log2 calculators, and 16 DCTs). It must be pointed out, 
however, that the implementation of this unit was not fully functional. While audio signals were 
correctly modulated up to the filters, the accumulators used were flawed and did not output 
correct values. Therefore, the spectral coefficients obtained were not correct and this prevented 
full system functionality.  

 
2.2 Distance Processor Subsystem (J) 
 

A problem that arises when two audio samples divided into equally spaced time intervals 
are to be matched is that time misalignment of the audio makes it impossible to calculate an 
efficient Distance Metric using a single comparison between coefficients at the same time 
intervals. This subsystem uses a simplified adaptation of the Dynamic Time Warping algorithm 
presented in Kavaler et al. [1] to solve this problem. The main idea behind our implementation is 
that the current audio’s coefficients at any time interval should be at a minimum Euclidean 
distance from one or more time interval coefficients only for the correct stored user. Similarly, if 
the spoken audio does not correspond to a specific user, the input audio’s coefficients should not 
be close to any of that user’s coefficients at any time interval. This is done for all time intervals 
of the current input audio, and then the Distance Metric for each user that will be used to 
distinguish among them is obtained by adding the minimum distances of each user at all 160 
time intervals. The only difference between the approach presented in Kavaler et al. [1] and our 
adaptation is that ours is more flexible and less computationally intensive in the sense that it 
looks for the coefficients in the time interval that minimizes Euclidean distance without checking 
that the selected time intervals are in a coherent order.  

Our implementation calculates Euclidean distance in a serial manner. That is, it takes as 
input two sets of 16 spectral coefficients, each set with a corresponding signal that goes high for 
one clock cycle to indicate when it has changed its value. The Euclidean distance among the two 
is calculated and additional counters and logic are used to determine and store the minimum 
distances of each particular user on any current input’s time interval and to perform the 
accumulating function of these minimum distances for all the 160 current input’s time intervals. 
The final outputs of this module are four 48-bit signals, each giving the total distance between 
the current input’s coefficients and the stored user’s coefficients, along with a signal indicating 
that the Distance Metric is valid. Figure 5 shows the complete Block Diagram for this unit. 
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Figure 5. Block Diagram of the Distance Processor Subsystem 
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Figure 6. State Transition Diagram for the Distance Processor Unit. 

 
Upon asserting reset, this unit enters an IDLE state in which it does no computations. If 
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computations for last current audio coefficients, the Countrol Unit must assert for one clock 
cycle an additional input signal to indicate it has no more coefficients to give. By doing this, 
when the last user’s coefficients are finished computing, the overall Distance Metrics for the 4 
users are passed to the Control Unit along with an asserted signal indicating that the Metrics are 
valid. 

 
2.3 Operation (R) 

The system has two modes of operation: a user can be added to the database of the 
system, or an unknown user can be identified based on the entries in the database. The mode is 

new_stored
IDLE  COMPUTING 

CHECK_END  ACCUMULATE 

reset 

 go 

done 

done 

Vector 
Distance 

Square 
Root 

ready  start 



12 
 

controlled with two buttons. Button 3 [activates] the add mode, and button 4 [activates] the user 
identification mode.  
 
2.3.1 Adding Users to the Database (R) 

To add a user to the database, button 3 must be pressed. If the system is not BUSY 
performing an action the LED lights show that the system is extracting the voice of the user, and 
the monitor displays an E demonstrating that the voice extraction is being performed.  The user 
should say a word, which will be his password, into the microphone.  

After the signal is extracted, and the spectral coefficients are produced, the Control Unit 
transitions into the ADD state, in which the coefficients will be stored into the 16 RAMs. While 
accessing the memory, the LED lights show that the system is adding a new user, and the 
monitor displays an A, [signaling] that an ADD is been performed.   
 When the storing action is complete, the LED lights show that the system is done with 
the ADD, and the monitor displays an AD, stating that an ADD has been performed. 
Immediately after, the system is ready to perform another action. The Control Unit transitions 
into the IDLE state, the LED lights show that the system is ready for an action, and the monitor 
displays READY.  
 
2.3.2 Identifying Users (R) 
 To identify a user to the database, button 4 must be pressed. Similarly to the ADD mode, 
if the system is not BUSY the LED lights show that the system is extracting the voice of the user, 
and the monitor displays and E, signaling the voice extraction. The user should [say] his 
password into the microphone.  
 After the signal is extracted, and the spectral coefficients are produced, the Control Unit 
transitions into the ID state, in which the coefficients for each of the users previously added will 
be fetched from the database. While fetching the spectral coefficients from the memory, and 
comparing them with the ones produced with for the user that is [asking] for an identification the 
LED lights sow that the system id identifying a user, and the monitor displays an I, indicating 
that an ID is being performed.  
 When the distance and the validation modules finish comparing the spectral coefficients, 
and comparing the user distances, respectively, the displays change. The LED lights show that 
the system is done with the ID, and the monitor displays and ID, confirming that the ID has been 
performed. Subsequently, the system is ready to perform another action. The Control Unit 
transitions into the IDLE state, the LED lights show that the system is ready for an action, and 
the monitor displays READY.  
 
2. 4 Control Unit (R) 

The Control Unit module is the [big picture] controller for the system. This module has 
five states: IDLE, RESET, BUSY0, BUSY1, and BUSY2. Figure7 provides a representation of 
these states. It works as a major FSM and controls the LED lights, provides the input for the 
display module, instantiates the minor FSMs: MEM_ID, MEM_ADD, and VALIDATION.  
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The IDLE state is the ready mode, in which the system is waiting for an action. IN this mode the 
user can select to either add or identify a user, utilizing button3 and button4, respectively. When 
the user presses any of these two buttons, the controller will transition to the BUSY0 state. At 
this state a pulse is sent to the voice module via the extract signal. The module remains in this 
state until the voice module sends a pulse via the extracted signal, indicating that the voice 
extraction and analysis has been performed. When the extracted pulse is received, the controller 
will transition to the BUSY1 if the user selected the ADD mode, and into BUSY2 if the user 
selected the ID mode.  
 For adding a user to the database, the controller remains at the BUSY1 state until the 
MEM_ADD minor busy signal goes low. For identifying a user, the controller will remains at the 
BUSY2 state until the MEM_ID minor busy signal goes low, and the VALIDATION minor send 
a pulse via the validation_done signal. After completing any of the two actions the system will 
return to the IDLE state.  

If the user desires to reset the system, button0 should be pressed. The Control Unit 
module will transition into the RESET state, reset its outputs, and instruct the rest the rest minor 
FSMs to reset their outputs.   
 
2.5 ADD: (R) 
 The MEM_ADD module is one of the minor FSMs instantiated by the Control Unit. This 
module has three states: IDLE, PROCESSING1, and PROCESSING2. Figure8 provides a 
representation of these states. When the Control Unit sends a pulse via the add_start signal, the 
MEM_ADD module transitions from the IDLE state to the PROCESSING1 state. While 
transitioning, the module will activate the write-enable, produce the memory address signal, and 
start sending the features, produced by the voice module, to the memory.  

Figure 7. Control Unit Major FSM State Diagram. 
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The module will transition repeatedly from PROCESSING1 to PROCESSING2, which is 
identical to PROCESSING1, and vice versa, until the internal count reaches 159. Because 160 is 
the amount of features received for each user. At that moment sends the last features to the 
memory and transition into the IDLE state.  
 
2.6  IDENTIFY: (R) 
 The MEM_ID module is another minor FSM instantiated by the Control Unit. This 
module has three staes: IDLE, PROCESSING1, and PROCESSING2. Figure 9 provides a 
representation of these states. When the Control Unit send a pulse via the id_start signal, the 
MEM_ID module transitions from the IDLE state to the PROCESSING1 state. While 
transitioning, the module will produce the memory address signal, and will start [fetching] the 
stored features from the memory. When the module receives the features from the memory, it 
sends the data to the Distance module. 
 

 
 
 
    
 The module will transition repeatedly from PROCESSING1 to PROCESSING2, which is 
identical to PROCESSING1, and vice versa, until the 159 features for each of the users have 
been [fetched]. At that moment the module sends the last features to the memory and transition 
into the IDLE state.  
 
 

Figure 8.MEM_ADD Minor FSM State Diagram. 

Figure 9. MEM_ID Minor FSM State Diagram. 
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2.7 VALIDATION: (R) 
 The VALIDATION module is another minor FSM instantiated by the Control Unit. This 
module has two states: IDLE, and PROCESSING. Figure 10 provides a representation of these 
states. When the Control Unit sends a pulse via the validation_start signal, the VALIDATION 
module transitions from the IDLE state to the PROCESSING state. At the PROCESSING state, 
the module compares the user’s distances provided by the distance module and selects the user 
with the smallest distance.   

 
 
 
 
2.8 Memory: (R) 
 In order to store and read the features produced by each voice input in an efficient 
manner, sixteen 16x640 RAMs were produced, one RAM for each of the spectral coefficients. 
The RAMs were [produced] utilizing Coregen, and instantiated in the labkit.  
 
2.9 Action Register: (R) 
The ACTION_REG is a module responsible of receiving the synchronized user inputs, ADD or 
ID. If the current system is not performing an action, the register will send the selected action to 
the Control Unit via the action signal.  
 
2.10 VGA: (R) 
 The VGA module is responsible for producing the vertical and horizontal sync and 
blanking signals and for producing a pixel and line count.  
 
2.10.1 Display: (R) 
 The Display module is responsible for producing the red, green, and blue signals for the 
video. It receives the pixel and line counts from the VGA, and a vgaouput signal from the 
Control Unit that encodes the text that it must produce. To produce the text the module 
instantiates another one called rectangle.  
 
2.10.2 Rectangle: (R) 
 The Rectangle module is responsible for producing rectangles that are used by the 
Display Field module to display the text. It receives the pixel and line count produced by the 
VGA, and produces the rectangles that create the text.  
 
3. Testing and Debugging: 

Overall, ModelSim simulations were the preferred method of testing individual modules 
because it is much quicker. However, since total system integration was not possible, to actually 

Figure 10. VALIDATION Minor FSM State Diagram. 
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prove that the implementations were correct, the subsystems were also tested with FPGA 
implementations using additional modules that simulated input behavior. 
  
3.1 Simulated Waveforms: (R) 
 The Control Unit and the minor FSMs were tested by creating Verilog test benches 
within the project itself. ModelSim generated waveforms that were utilized by the programmer to 
study the behavior and functionality of the modules. Test benches were created for testing the 
Control Unit, the Add FSM, the Identification FSM, the Validation FSM, the Memory, and the 
Action Register.  
 
3.2 Audio Testing: (J) 

In the case of the Audio Processing subsystem, this was not necessary because the input 
audio already came from the FPGA, although the start signal was simulated as a standard input 
button that we could press. The proper output was then analyzed using the digital oscilloscope 
and appropriate triggering methods. From these tests it was discovered that the actual outputs on 
the accumulators were not what they should be although the path up to the filter outputs seemed 
fine. The problem could not be solved. 
 
3.3 Distance Testing: (J) 

Meanwhile, to test the Distance Processor subsystem, a similar approach was taken, a 
testbench that simulated constant input audio spectral coefficients and two different sets of 
constants stored coefficients was generated. The module that generated this is included in the 
Appendix. Upon pressing the start input button, a state toggled and one of two stored sets of 
spectral coefficients was chosen. This remained constant throughout the whole sequence. The 
test bench then cycled through all the necessary start/ready loops and finally signaled the 
processor that no more data was stored. The observed output showed correct values for each of 
the two sets of stored coefficients. 

 
4. Conclusion: 
 The objective of this final project was to design and implement a complex digital system 
combining voice, video and user interfaces. The analysis presented in the previous sections 
shows a fully functional control units, video displays, user interfaces, and voice extraction 
system. In addition, it includes a fully functional voice modulation algorithm, and a partially 
functional voice modulation system. A comprehensive testing and debugging methodology was 
utilized, which validated the functionality of the different modules.  
 Overall this project could have been a great success. However, due to time constraints 
and the complexity of what the team wanted to do impeded the integration of all modules and the 
completion of our project.  
  Some of the lessons learned from this project are the importance of a good design 
planning and long hours of testing and debugging. As a whole, this project gave insight into 
designing a complex system which could be divided and tested separately. If we would have 
been able to integrate the whole project, this would have made the integration portion easier.  
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