Newtonian N-Body Simulator

Michelle Teh, Michael Witten
{mpteh,mfwitten } @mit.edu

May 17, 2007

Massachusetts Institute of Technology
6.111 Introductory Digital Systems Laboratory

Professor Anantha Chandrakasan
TA: David Wentzloff

Abstract

The objective of the project is to create a simulation of objects under the influence of gravitational
force. These processes are performed part in parallel and part in serial. The objects are represented as
circles on the double buffered VGA display. A user interacts with this system using a PS/2 Mouse; the
user can add and track objects or scale the display’s coordinates. Many of the components of this project
are completed, but the system has yet to be integrated.

Contents

1 Overview

2 Modules and Implementation

2.1 Mathematics L
2.2 Gravitational Accelerator L L
2.2.1 Imteraction Scheduler.
2.3 Data Representation L L e
2.3.1 Circle Drawing Algorithm
2.3.2 Drawer Circle Module
2.4 Zero Bus Turnaround (ZBT) SRAM Interface
2.4.1 Double Buffering
2.5 User Interface: PS/2 Mouse
2.5.1 PS/2 Mouse Protocol
2.5.2 PSMouse Module L e
2.5.3 PS2MouseController Module
2.5.4 PS2Sender Module L
2.5.5 PS2Receiver Module Lo
2.5.6 PS2MouseDecoder Module oL Lo

3 Testing

4 Conclusion

10
11
11
12

12

12

List of Tables

S Ut e W NN =

Stage Pipelining for 10 objects. 4
10-object Interactions. L 4
Data stored in Block RAMSs. 5
PS/2 Bidirectional Synchronous Serial Protocol. 8
The 11-Bit-Frame. e 8
PS/2 Mouse Three-Byte Movement Data Packet. 8

List of Figures

© 0 N O Ot e W N =

e e T e T e T S — SR S Gy S
N O Ot R W NN = O

The High-Level Block Diagram. o 1
The Interaction Scheduler Module. 3
The Interaction Scheduler Module. 4
Data Represented as a Circle. 5
Bresenham’s Circle Drawing Algorithm. 5
The Circle Drawing Modules. e 6
The Drawer Circle Module. 6
ZBT Module. e 6
ZBT Module. 7
PS/2 Socket. 7
PS2Mouse Module. 9
PS/2 Mouse Block Diagram. L e 10
PS2MouseController Module. L e 10
PS2MouseController State Transition Diagram. 11
PS2Sender Module. 11
PS2Receiver Module. e 12
PS2MouseDecoder Module. 12

ii

1 Overview

The N-body problem involves calculating the results of the physical interactions between n entities. The goal
of the N-body problem is to calculate the state of the entities at any given time after the initial conditions
have been set.

In our case, these entities are spheres of uniformly distributed matter, and we are trying to calculate the
results of the gravitational forces between them. This specialization of the problem is known more familiarly
as the Newtonian N-body problem, as it employs Newton’s law of gravitation.

Ideally there would be some function that calculates the state of the matter at any input time ¢; however, no
such closed-form solution is known for the general case, so that the problem can only be solved via iterative
approaches, such as the Fuler Step Methods and their ilk. Unfortunately the iterative method scales very
poorly: Each of the n entities interacts with the other n — 1 entities, for a total of n(n — 1) = n2 —n

interactions. Thus the problem grows according to O(n?).

In practice, the number of interaction calculations can be approximately halved by exploiting Newton’s law
of equal but opposite forces. Besides fancy specializations and other tricks, the only method to speed up the
calculations is to exploit the property of superposition: With the assumption that the interaction between
any 2 bodies is independent of any other 2-body interaction, all of the interactions can be calculated in
parallel; such a propertly lends the N-Body Problem nicely to a solution in hardware, such as on an FPGA.
This project has attempted to do just that.

However, parallelism of calculation involves a balance beween space and time. The more that is done in
parallel, the more hardware that is required. For instance, using a Virtex IT (family XC2V6000, speed grade
4, in a BF957 package) to provide a pipeline for each of the n(n — 1) interactions would only allow for
calculating just the accelerations between roughly 3 spheres.

We therefore found it necesary to compromise pure parallelism for an increase in usable resources by utilizing
one pipeline for all interactions; this necessarily introduces a dependency on shared hardware, such as when
accelerations must be accumulated, as described in Section 2.2.1.

With the ability to calculate successive iterations of the matter’s properties, we can then display the results
in any number of ways. We have decided to represent each frame of data as a visual representation of the
physical scene by drawing circles to represent the objects. Given the ability to visualize the data, we have
decided to include user interaction via the ability to manipulate the positions of objects through a PS/2
mouse input.

While we were not successful in creating a final system, many of the necessary and more troublesome parts
have been designed. This report details those results. A simplified block diagram of the entire system is
given in Figure 1.

VGA €% ADV
7125

Controller

! |

| e — |

1 e — | PS/2
| PS/2 Mouse "] Mouse
| MAJOR [Port
: Gravitational FSM }

: l—» Accelerator 1

1 Interaction :

} Scheduler :

: ™ Drawer :

: Cursor Double ‘J_’ 7BT
: Buffer 1—#—’

I — I

| Drawer | | 1

| Circle 1

: . Memory [!

| Acceleration . i :

1 Accumulator 5 |

: & Applier [Unit }

I |

I

|

I

I

I

: reset
P

| (goes to all blocks)

Figure 1: The High-Level Block Diagram.

2 Modules and Implementation

2.1 Mathematics

The modules that implement arithmetic are designed in a way that promotes flexibility of number repre-
sentation and maintainability of Verilog code. In particular, all real number operations are either binary or
unary, taking either 2 arguments or 1 argument, respectively. Consequently, any module that adheres to
this interface can be used as a drop-in replacement, provided it is used with modules that employ the same
underlying number representation.

Indeed, the infrastructure for introducing such a variety of formats has already been implemented and allows
a designer to switch the entire system between formats with a few macro definitions, allowing for a much
more flexible design process. At any time, arithmetic for the entire system can be converted between floating
point, fixed point, or something as exotic as binary-coded decimal numbers, all transparently to any higher-
level modules; this is important when the usage of FPGA resources is not fully determinable during the
design phase, thus reducing the magnitude of an entire design iteration.

Moreover, the reuse of abstracted interfaces via heavy use of Verilog preprocessor directives provides central
points from which entire subtrees of modules can be appropriately modified, thereby increasing maintain-
ability and consistency. For instance, it was discovered that the Xilinx IP for floating point numbers use
a different interface than the number modules of this project. However, since all arithmetic operators are
created on the fly via macro expansion upon Verilog compilation, only 2 lines of one file were necessary to
change in order to properly connect ports for all uses of our arithmetic modules.

Thus far floating point arithmetic has been implemented by the modules FloatAdd, FloatSub, FloatMul,
FloatDiv, FloatNeg, and FloatSqrt, which are further built on either IP core or simulatable Verilog code,
depending on the testing environment.

Those modules are transparently used by a higher level of modules: RealAdd, RealSub, RealMul, Real-
Div, RealNeg, and RealSqrt, which can of course transparently use other number representations.

These modules are then used to build representation independent vector operations: VectorAdd, VectorDi-
vReal, VectorDot, VectorLength, VectorMulReal, VectorNeg, VectorNormalize, and VectorSub.

It is assumed that these modules can be presented with new data on every cycle. The latencies are auto-
matically accumulated and bubbled up through the abstractions, so that the entire system up to the highest
levels can automatically reconfigure itself upon changes in the lowest levels, reducing and eliminating tedious
and error-prone refactoring of Verilog code by hand'.

With the modules for mathematics at hand, it is possible to create more elaborate calculations for the
purposes of our physics simulation.

2.2 Gravitational Accelerator

The GravitationalAccelerator module produces the accelerations due to the gravitational interaction
between 2-bodies. These accelerations are calculated according to Newton’s inverse square law:

mimsa

F=G (1)

r2
The module takes as inputs the 2 objects’ masses (as real numbers) pre-multiplied by the Gravitational Con-
stant and their centers of gravity (as vectors in an absolute Cartesian coordinate system). The appropriate
2-body system accelerations are produced after the required latency. The block diagram is given in Figure
2 and the internal pipeline of calculations is given

IThe vector operations are not as elaborately macro expanded, as they already constitute modules at a high enough level
to enjoy separation from the gritty details of the lower levels.

@ 2Cente1> obj1Center

obj1GM as’ getVectorFrom1To2 (VectorSub) ‘

obj2GMass #1

\\iclorFromlToz l
delayObj1GMass vectorFrom1To2 | getDistanceSquared (VectorDot) delayObj2GMass #2

distanceSquared /ﬂsxanceSqNanceSquared obj2GMassDelayed

getObJZAcodMag (RealDiv)

/)bj 1GMassDelayed

’ getObj1AccelMag (RealDiv) delayVectorFrom1To2 ’ getDistance (Real Sqrt)

}bj 1AccelMag &ictorFromlTOZDel ayey distance

V

delayObj1AccelMag getObj 1AccelDir (VectorDivReal) obj2AccelMag

&)LlAcceiMagDelayed obj1Accel DN‘bleocdDw

getOleAocel (VectorMulReal) ‘ getObj2Accel Dir (VectorDivReal) ‘ delayObj2AccelMag

lobj2Accel Dir obj2AccelMagDelayed

ob]lAcceI getObj2Accel (VectorMulReal) ‘
‘AZACCH

Figure 2: The Interaction Scheduler Module.

+«— — H —— P «— P «—

2.2.1 Interaction Scheduler

Although the FPGA has 33,000 slices, it is still insufficient to perform all the necessary calculations in
parallel, since it takes approximately:

Sn” =))

In order to deal with this constraint, the hardware is reused with careful pipelining procedures so that the
results are produced every cycle after a sufficient latency. An InteractionScheduler module is designed to
accurately send objects into the pipeline such that there are no two interactions that are calculated with the
same object at the same time. The patterns were observed and several formulae were produced.

To illustrate the formulae produced, lets consider the interaction patterns for 10 objects shown in Table 1.
Using Equation 2, 10 objects would involve 90 calculations per unit time. Since each stage of a pipeline
cannot process the same object twice, only 5 pairs of interactions can be calculated per stage, thus, 9 stages
are required to calculate all the 2-body interactions of 10 objects in the gravitational field. Each object has
to be carefully paired in each stage to ensure no calculation duplication in later stages and no clashes in the
pipelined accumulator stages. If we are given that there is 3 pipelined accumulator stages for the 10 objects,
each number can only be sent in to the pipeline again after at least 3 clock cycles.

Table 1: Stage Pipelining for 10 objects.

| Primary Secondary |

123456789
23456789
3456789
456789
56789
6789

789

89

9

Table 2 shows explicitly the pairs of interactions that are sent to the pipeline every cycle such that there
are no conflicts in the acceleration accumulation stages or duplication of interaction pairs in later stages. A
consistent pattern can be observed:

Table 2: 10-object Interactions.
| Stage 9 | | Stage 8 | | Stage 7 | | Stage 6 | | Stage 5 | | Stage 4 | | Stage 3 | | Stage 2 | | Stage 1 |

(0, 9) (0, 8) (0, 7) (0, 6) (0, 5) (0, 4) (0, 3) (0, 2) (0, 1)
(1, 8) (1, 7) (1, 6) (1,5) (1, 4) (1, 3) (1, 2) (3, 8) (2, 8)
(2, 7) (4, 9) (2, 5) (3, 9) (2, 3) (2, 9) (4, 8) (1, 9) (3, 7)
(3, 6) (2, 6) (3,4) (2,4) (6, 8) (5, 8) (5, 7) 4, 7) (4, 6)
(4,5) (3, 5) (8,9) (7, 8) (7, 9) (6, 7) (6, 9) (5, 6) (5, 9)

For s = (current stage number) and k¥ = (max number of stages),
Interaction pair = (z,y) st.x+y=s, forx<=s, x+y=s+k forx>>=s (3)

Interaction pair = (x,k) s.t. x = (s + k)/2 for s odd, x = s/2 for s even 4)

The placement of the interaction pair (x,k) in the pipelined stage has to be carefully thought out to prevent
conflicts in the acceleration accumulation stages. In this example, the (x,k) in the odd stages are placed last
whereas in the even stages, the (x,k) are placed third from the top.

These formulae are easily implemented as counters in the Interaction Scheduler module since the numbers
in the pattern is seen to consistently decrement or increment except for the anomaly, (x,k). The ports of the
module are shown in Figure 3.

lock primary [objectsBits-1:0]
cloc ; :
P InteractionScheduler secondary [objectsBits-1:0] >
reset .
g finished >

Figure 3: The Interaction Scheduler Module.

2.3 Data Representation

The n-bodies each have its own data (Table 3) that is placed in nine separate dual port Block RAMs to
achieve parallel access of the data such that the gravitational force calculations among objects can be done
in parallel. These variables are represented as single-precision floating numbers to support a wide range of
magnitude, i.e. the size of a small pebble to the size of the earth. The data BRAMs are instantiated and

handled by the Memory Management Unit module that allows the acceleration accumulator, gravitational
accelerator, and the drawer circle modules access to the data.

Table 3: Data stored in Block RAMs.

m mass
T radius

(z,9) position
(vg,vy) | velocity
(az,ay) | acceleration

Figure 4: Data Represented as a Circle.

2.3.1 Circle Drawing Algorithm

In this project, the n-bodies are represented as circles, drawn using the well established Bresenham Circle
Drawing Algorithm that involves only simple integer addition and bit shifting, avoiding other costly op-
erations such as general multiplication, division, square roots, or trigonometric functions. The algorithm
produces circles of any (non-negative) integer radius composed of points with integer coordinates. Moreover,
the generated circle is guaranteed to contain no gaps due to the use of symmetry; its outline is always
continuous.

To produce a circle, the locations of points are calculated along only one octant, and a circle’s perfect
symmetry is used to extrapolate the points of every other octant, as illustrated in Figure 5. In this case,
points in one octant are obtained by tracing a path beginning with the point (0,7). If the next point is
to the right of the circle, then the trace is moved down in order to bring the trace back onto the circle.
This produces a series of steps that are reflected across the abscissa, ordinate, and the line y = 2 (Refer to
McMillan’s for a derivation formulas) [3].

() () L 11111
(y:x) (%)
NY ..
(-y,x) (%)
(-x,-y) (X,-y)
(a) The Circle Octant. (b) State Transition Diagram.

Figure 5: Bresenham’s Circle Drawing Algorithm.

The CircleOctant module designed in this project implements Bresenham’s octant tracer. The Circle
module produces the rest of the points based on symmetry. The ports of these module are shown in Figure
6. A CircleOctant is instantiated within the A Circle. The CircleOctant produces xOctant and yOctant
for a circle of size radius when its next is asserted. The Circle module produces a new point on the circle
when its own next signal is asserted. New points are calculated until it determines that the circle is complete
(when xOctant > yOctant), in which it pulses its done signal with the last new point.

clock

reset > x [10:0] o
clock > centerX [10:0] o 9:0] v
reset xOctant [10:0] . centerY [9:0] d Circle YL >
- g . » > done o
radius CircleOctant yOctant [9:0] . radius »
L L L
getNextOctant next N
L L
(a) The Circle Octant Module. (b) The Circle Module.

Figure 6: The Circle Drawing Modules.

2.3.2 Drawer Circle Module

The DrawerCircle module is responsible for converting a Circle’s points from the Cartesian coordinates
(z,y) to a linear memory address in a pixel buffer (see Section 2.4). Given a screen width of w pixels, the
address is calculated as follows:

address = = + wy; (5)

Any points (x,y) that do not fall within the visible screen are simply not written to the buffer, as determined
by controlling a writeDisable.

The ports of the Drawer Circle module are shown in Figure 7.

clock

»
Lad
reset > address [18:0] ~
terX [10:0 ¢
centerX [10:0] > . writeDisabled >
centerY [9:0] DrawerCircle - v
» finished ~
radius "
Lad
start »
Lad

Figure 7: The Drawer Circle Module.

2.4 Zero Bus Turnaround (ZBT) SRAM Interface

The ZBT module (see Figure 8) defines an interface for interacting with a subset of the actual ZBT hard-
ware’s features, abstracting away unnecessary details: The ZBT is used simply to read or write into a given
location; if read is asserted, the ZBT read from the supplied address, otherwise, the supplied data is written
to that address.

dataToRead [35:0]

—>
ramAddress [18:0] o
—>
clock ramData [35:0]
[t
reset ramDisable (ce_b) S
L
read ZBT ramDisableOutput (oe_b) 4:
address [18:0] Interface ramDisableWrite (we b)
_adaressiiedl) -
dataToWrite [35:0] ramDisableWriteByte (bwe711:
ramDisableClock (cen_b) 4:
>
ramEnableBurstMode (adv_Id)
ramClock 4:
>

Figure 8: ZBT Module.

2.4.1 Double Buffering

The 2 ZBTs of the Labkit are used to implement a double-buffered video RAM. While one of the ZBTs is
being read to produce VGA output, the other can be used to store data for the next frame to be displayed.

This approach not only allows for drawing operations that involve random access of pixel data, but also
operations that take arbitrary numbers of cycles.

In particular, the use of each ZBT is arbitrated by a BufferSwitcher module (see Figure 9), which provides
a general interface for sharing any buffer that implements the ZBT module user interface. Moreover, a
BufferSwitcher can transparently moderate the use of buffers between two separate clock domains triggered
by clkA and clkB, provided that the BufferSwitcher’s clk > clkA, clkB.

Essentially, when systems A and B agree that a switch can be performed, the moderating BufferSwitcher
swaps the connections and then informs each system with a pulse synchronized to its respective clock. This
way, each system can operate without any knowledge of the other system; each system need only communicate
with the BufferSwitcher. While the handshaking protocol may waste cycles, especially if the 2 systems are
asynchronous, this extra generality provides a means running drawing operations must faster than that the
VGA output operations. Furthermore, the handshaking necessarily eliminates the possibility of erroneously
accessing the buffer.

clk

reset dataToReadA [35:0] >
clkA dataToReadB [35:0]
clkB finishedSwitchingA
finished A - finishedSwitchingB
finishedB clk0 :
readA Buffer clkl :
readB Switch read0 :
addressA [18:0] readl :
addressB [18:0] | address0 [35:0] :
dataToWriteA [35:0] address] [35:0] :
dataToWriteB [35:0] dataToWrite0 [35:0] :
dataToRead0 [35:0] dataToWritel [35:0] ;
dataToReadl [35:0]

Figure 9: ZBT Module.

2.5 User Interface: PS/2 Mouse

The PS/2 Mouse provides an interface for the user to interact with the system. The user can add or track
objects in the gravitational field by holding down the left and middle buttons. As soon as the middle button
is released the radius is calculated and the circle is drawn on screen. This circle can be tracked until the
left button is released. The user can also choose to scale the display coordinates of the screen with the right
button.

Unfortunately, the user interface has yet to be implemented. Nonetheless, the PS/2 interface between the
mouse and the FPGA has been completed. A user can move the mouse and observe a moving 8 by 8 pixel
cursor on screen. The subsequent sections discuss the protocols and implementation of the PS/2 Mouse.

2.5.1 PS/2 Mouse Protocol

The PS/2 mouse utilizes a bidirectional synchronous serial protocol. The clock and data lines, shown in
Figure 10, are active high if neither the mouse nor the host (the FPGA) pulls them low.

Figure 10: PS/2 Socket.

The protocol for communication between the host and the mouse is shown in Table 4. The mouse transmits
its data whenever the bus state is Idle whereas the host has to first enter the Communication Inhibited state,
and then the Host Request-to-Send state before sending its data to the mouse. The host enters these states
to signal the mouse to begin generating a clock pulse of 10 - 16.7 kHz frequency [1].

Table 4: PS/2 Bidirectional Synchronous Serial Protocol.
| Data Line | Clock Line | Bus State |

High High Idle: The mouse is allowed to transmit data.
High Pulled Low | Communication Inhibited: The host halts the mouse from transmitting data.
Pulled Low | High Host Request-to-Send: The host signals the mouse that it wants to send data.

There are timing constraints, occurring in the Communication Inhibited and Host Request-to-Send states,
that have to be satisfied before the host sends commands to the mouse. In the Communication Inhibited
state, the Clock line has to be pulled low for at least 100 us before the Data line is pulled low. After the
Data line is pulled low in the Host Request-to-Send state, the Clock line is held low for an additional 5 us
before the Clock line is released. These timing constraints are essential because of the mouse’s slow clock
frequency with respect to the FPGA’s system clock, otherwise these signals would be missed by the mouse.

Data is transmitted one byte at a time with each byte contained in a frame of 11 bits (Table 5). The host
reads the data sent by the mouse on the falling edge of the clock signal whereas the mouse reads the data
sent by the host on the rising edge.

Table 5: The 11-Bit-Frame.
| Bit(s) | Significance |
0 Start bit: Always represented by 0.
1 to 8 | Data bits: The least significant bit is transferred first.
9 Odd Parity bit: The whole frame must have an odd number of "1’.
10 Stop bit: Always represented by 1.

A standard PS/2 mouse keeps track of mouse movements from its current location and transmits the infor-
mation along with the button clicks in a 3-byte-packet [2]. These movements consist of the X-movement and
the Y-movement that are each represented as a 9-bit two’s complement value. The signed bit is sent in the
first byte, as shown in Table 6. Since the 9-bit two’s complement value can only represent numbers ranging
from -255 to 255, overflow flags for X and Y are transmitted in the first byte.

Table 6: PS/2 Mouse Three-Byte Information.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 1 | Y overflow | X overflow | Y sign bit | X sign bit | Always 1 | Middle button | Right button | Left button
Byte 2 X movement
Byte 3 Y movement

The PS/2 Mouse needs to be initialized and set to enable Data Reporting before it is ready to stream the
3-byte movement data packets. The initialization process begins with the host sending a Reset command.
After the mouse acknowledges the receipt of the Reset command, it performs a self-diagnostic test known
as the Basic Assurance Test (BAT) and sets the default values for the following:

Sample Rate: 100 samples/second
Resolution: 4 counts/millimeter
Scaling: 1:1

Data Reporting Disabled

Upon a successful BAT, the mouse sends the BAT completion code and its Device ID. After the mouse
sends the Device ID, the mouse is by default in Stream mode. The mouse continuously tracks the cursor
movement and button clicks in Stream mode. However, the mouse does not issue these tracked movements
until it acknowledges that the host has sent a Data Reporting Enable command to the mouse.

2.5.2 PSMouse Module

The PS2Mouse module is an abstraction of the underlying communication between the mouse and the
FPGA. The ports of the module are shown in Figure 11. At every nexzt signal, given that the dataAvailable
signal is high, the PS2Mouse module outputs the cursor’s x and y locations as well as the buttons that
have been clicked by the user. A First-In-First-Out (FIFO) buffer, with the depth of 8, is implemented
within this module to store decoded mouse movement data packets that have not yet been processed. The
buf fer Full is set to high as soon as the FIFO is completely filled.

mouseClk

»

clock N mouseData :
Lad Ll

reset o x [10:0] I
> >

mouseClk > PS2Mouse y [9:0] >
mouseData N buttons [2:0] o
> >

next N bufferFull R
> >

dataAvailable T

»

Figure 11: PS2Mouse Module.

This underlying communication between the mouse and the FPGA is divided into several modules that the
PS2Module instantiates:

sends commands to the mouse.

PS2Sender
PS2Receiver receives packets from the mouse.
PS2Decoder decodes the packets.

arbitrates the flow of data between a
PS2MouseController PS2Sender, a PS2Receiver,
and a PS2Decoder

The connections between these module are shown in Figure 12.

PS2Mouse.v

ck - s e e]
reset |
(goes toall blocks) | dataToSend [7:0] |
| send |
| timerExpired PS2Sender :
I sendFinished mouseClock PS/2
t
M* mouseData Mouse
| PS2Mouse read | Port
| Controller
: |
| byte [7'0_] PS2Receiver |
| byteAvailable |
|
|
|
|
| !
[g :
! decoderEnable PS2Mouse |
| Decoder |
| I
|
| xDelta [8:0] |
|
| yDelta [8:0] :
| FIFO buttonsDecoded |
|
| _ dataDecoded Available I
< |
|
| \ 1 dataAvailable
| | bufferFull
| T x [10:0] ¢ To FSM
o
| Ly [9:0] .
buttons
| >

Figure 12: PS/2 Mouse Block Diagram.

These modules are described in the following sections.

2.5.3 PS2MouseController Module

The PS2MouseController module acts as a major Finite State Machine (FSM), mediating the PS/2
bus between sending commands to the mouse and receiving packets from the mouse. It is responsible
for initializing the mouse and establishing the Data Reporting Enabled Stream mode. The controller also
instantiates a Timer that maintains the timing constraints required when the FPGA sends commands to the
mouse (refer to Section 2.5.1) and ensures the mouse responds to the issued commands in a timely fashion.

The ports to the PS2MouseController module are shown in Figure 13. The send and read signals are
issued to notify either the PS2Sender or the PS2Receiver to begin sending or receiving data from the
Data line. It sends data through the dataToSend port and receives data through the dataT oReceive port
when byteAvailable is high. The sendFinished is high when the mouse recognizes that it has received all
11 bits of a frame. When the initialization process is completed, the decoder Enable is set to high to notify
the PS2MouseDecoder to begin extracting the information from the packets.

clock send

» >
reset N read ~
L L
byteAvailable o PS2Mouse timerExpired N
L L
dataToReceive [7:0] | Controller dataToSend [7:0] o
L L
sendFinished o decoderEnable .
L Ll

Figure 13: PS2MouseController Module.

The state transition diagram of the PS2MouseController is shown in Figure 14. There are a total of nine
states to initialize the necessary timers, send the Reset and Data Reporting Enable commands, and wait for
a mouse response (refer to Section 2.5.1). The decoder Enable is set and kept high in the STREAM state.

10

timerExpired &&
sendState == SEND_RESET

timerExpired sendFinished

dataAvailable && timerExpired && dataAvailable &&
dataToReceive == CODE_ID sendState == SEND_ENABLE dataToReceive == CODE_ACK

RECEIVE SEND
ACK ENABLE ENABLE

dataAvailable && sendFinished
dataToReceive == CODE_ACK

timerExpired

RECEIVE
ACK RESET

RECEIVE
ACK BAT

dataAvailable &&
dataToReceive == CODE_ACK_BAT

Figure 14: PS2MouseController State Transition Diagram.

2.5.4 PS2Sender Module

The PS2Sender module is responsible for sending the commands exerted by the PS2MouseController
module when the send signal is high. Before it begins to send the commands (dataT 0Send) bit by bit, it pulls
the Clock line (mouseClk) low for 100 ps in the PULL _CLK _LOW state (Figure 15). In the PULL _DATA _LOW
state, the Data line (mouseData) is pulled low and after approximately 5 us the Clock line is released. This
transitions to the SENDING state when the mouse begins pulsing the Clock line. Since the mouse reads the sent
data at the rising edge of the clock, the bit being sent is changed at the falling edge (mouseClkW entLow).
The sendFinished signal is pulsed high when the mouse pulls the Data line low for a clock cycle upon
receiving all 11 bits of a frame. The timer Expired signal sent from the PS2MouseController is responsible
for timing the 100 us and 5 us constraints.

clock R send || resend timerExpired timerExpired
reset - mouseClockWentLow
> && datalndex != 11
g mouseClk talndex
mouseClkWentLow | CLOCK DATA
dataToSend [7:0] ¢ PS2Sender mous?l?ata PULL LOW PULL LOW
- » sendFinished
send a v
. . ld
timerExpired » mouseClockWentLow && datalndex == 11
(a) Module. (b) State Transition Diagram.

Figure 15: PS2Sender Module.

2.5.5 PS2Receiver Module

The PS2Receiver module is responsible for retrieving data from the Data line (mouseData) when the
PS2MouseController sets the read signal high (Figure 16). The bit is read from the Data line at every
falling edge of the clock (mouseClkWentLow) and after 11 bits are read, the byteAvailable is pulsed high
with the received data bits on the byte port. The byte is sent to the PS2MouseController during the
initialization process, but sent to the PS2MouseDecoder to be decoded during the Stream mode.

11

mouseClockWentLow
read && !mouseData

clock

»
L
reset q
L . mouseClockWentLow
mouseClk N byteAvailable ~ && bitlndex 1= 10
Ld . v
mouseClkWentLow PS2Receiver byte [7:0] o
L L
mouseData q
L
read > mouseClockWentLow && bitlndex = 10
(a) Module. (b) State Transition Diagram.

Figure 16: PS2Receiver Module.

2.5.6 PS2MouseDecoder Module

The PS2MouseDecoder module receives the byte from the PS2Receiver when the decoder Enable and
the byteAvailable signals are high (Figure 17). The module keeps track of the byte number and outputs
deltaX, deltaY, and buttons as soon as it receives the third byte. It sets the dataAvailable signal high to
notify the PS/2 Mouse module that then converts deltaX and deltaY into specific zy locations.

byte [7:0]
byteAvailable

dataAvailable

clock R
P deltaX [8:0] o
reset deltaY [8:0 »
d t :
decoderEnable R PS2Mouse clta¥ [8:0] >
P Decoder buttons [2:0] >
>
>

Figure 17: PS2MouseDecoder Module.

3 Testing
The modules implemented are rigorously tested in the following simulation environments:

e ModelSim SE (Special Edition)
e Xilinx ISE Simulator Lite
e Icarus Verilog

Refer to the Appendix for the simulation waveforms, testbenches, and verilog implementation of the project
modules.

4 Conclusion

This project has further enlightened us about timing constraints in hardware. Dealing with the PS/2 and the
ZBT has been a great challenge because of the timing constraints that needed to be met due to the different
clock domains. Besides these interfaces, pipelining the gravitational calculations and creating flexibility
between the use of floating or fixed point numbers required much detailed thinking and planning. The
project could have been more successful had there been an additional person to help out with the workload
or simply more time.

12

References
[1] A. Chapweske, The PS/2 Mouse Protocol,
http://www.computer-engineering.org/ps2protocol (May 2002)

[2] A. Chapweske, The PS/2 Mouse Interface,
http://www.computer-engineering.org/ps2mouse (Apr 2002)

[3] L. McMillan, Circle Drawing Algorithm,
http://www.cs.unc.edu/ memillan/comp136/Lecture7/circle.html (Sept 1996)

13

