
6.111 Final Project:
Wireframe Simulator

Sarah Cheng

Wireframes provide a “skeleton” for three-dimensional models by outlining the edges
and vertices of the object. In this project, we attempt to create an interactive wireframe
simulator in which the user can load their own models, rotate and move them around,
and view the results in real time. The simulator uses simple transforms and perspective
projection to produce the images.
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1 Introduction

Wireframes are the most basic, fundamental representations of three-dimensional objects. They
provide the foundations on which more sophisticated graphics techniques and models are built. In
this project, we attempt to implement a basic wireframe simulator, along with very basic interactive
capabilities. Users are allowed users to load their own figures, and rotate, pan around, and zoom
in and out on them, viewing their objects at different angles and perspectives. After all, a two-
dimensional representation of a static three-dimensional object just “isn’t” 3D!

We will begin by talking about the proposed behavior of the simulator in Section 2. Section
3 lays out the original plans for implementing the functionality. Section 4 relates the many trials
and tribulations (and there are many!) while building the project. The report concludes in Section
5 with reflections on the overall experience.

2 Functionality

Had the project been successful, it would allow users to input the coordinates of a three-dimensional
object and specific viewing parameters, and it would display a wireframe model of the object. The
user can then interact with the model by pressing buttons, allowing them to rotate, pan around,
and zoom in and out on the model.

2.1 ROM Input

Object coordinates and viewing parameters are specified through a user-provided ROM. The ROM
is 99 bits wide; the three leftmost bits function as opcodes, indicating the type of data, while the
other 96 bits are “arguments.” The ROM is delimited by a special opcode, 111, designating “end
of file.” All instructions after this line are ignored. The opcodes and argument formats are listed
in Table 1.

The coordinates should be specified as 16-bit signed numbers. The most significant bit is the
sign bit, the next four the integral part, and the last 11 the fractional part. In other words, only the
numbers in the range from -16 to 15.9995 can be entered. Segments are specified by concatenated
pairs of endpoints, and the points themselves are concatenated ordered triples.

The viewing plane is in the form z = a, where a is the user-specified constant. This represen-
tation is sufficient, because, given any arbitrary plane, the axes can be rotated so that the plane
satisfies z = a. For simplicity, we require that zeye > a, and that zeye ≥ 0.

2.2 User Interaction

While the system is running, the user can interact with the simulator via push buttons. The
simulator can rotate the scene, pan around, and zoom in and out, all in real time. Users can zoom
in and out with buttons 1 and 0, respectively. Panning and rotating are done with the four arrow
buttons. Turning switch 0 on activates rotation when one of the arrow buttons are pressed; leaving
it off enables panning.

3 Implementation

Again, the implementation described here is only the original plan of action. Most of the code is
in a “broken” state and does not reflect any of the functionality described here.
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3.1 Data Representation

3.1.1 Numbers

Most numbers are represented with a fixed-point scheme using 16 bits of data. The 11 least
significant bits represent the fractional part of the number, while the next 4 represent the integral
part. The last bit is reserved as a sign bit. All numbers use 2’s complement representation. This
means that all values are restricted to the range from -16 to 15.9995. For sake of simplicity, no
overflow checking or handling is ever done.

Addition and subtraction do not present problems; however, multiplication and division require
some special care. Addition and subtraction work correctly bit-by-bit, and the sum or difference
of two 16-bit numbers is simply another 16-bit result. Multiplication of two 16-bit numbers yield a
32-bit product, where the bottom 22 bits represent the fractional part, the next 4 the integral part,
and the top 2 bits representing the sign. To keep lengths of numbers constant and manageable, the
sign bit, the bottommost 4 bits of the integral part, and the top 11 bits of the fractional part are
extracted after each multiplication. Division is done through a divider module provided by Coregen.
The module is capable of signed division with 12 fractional bits, with the top bit denoting the sign
of the entire expression and the bottom 11 bits corresponding to the fractional value. Thus, to
maintain the 16-bit numerical representation, the quotient is left-shifted 11 bits while maintaining
its sign, and the bottom 11 bits replaced by the bottom 11 bits of the divider’s fractional output.

3.1.2 Coordinate system

Before we proceed, we must make the distinction between mathematical coordinates, screen coor-
dinates, and memory coordinates. Screen coordinates represent the pixels on the display monitor,
with (0, 0) representing the top left pixel. Thus, all screen coordinate values are integers. The
x-coordinate increases to the right, while the y-coordinate increases downwards.

Mathematical coordinates, on the other hand, are simply rectangular coordinates with points
plotted along a set of right-handed orthogonal axes. The coordinates can take any real-numbered
values. The xy-plane is perpendicular to the plane of display, with the x-coordinate increasing to
the right and the y-coordinate increasing upwards. The z-axis points perpendicularly out of the
screen, increasing towards the viewer.

Memory coordinates are identical to screen coordinates, except that, because each memory bit
represents a 2x2 square of pixels, they are scaled down by a factor of 2.

All 2D and 3D coordinates are represented as concatenated busses of 16-bit numbers. For
example, (0, 1,−1) would be represented as 48’h0000 0800 F800 (recall that the top bit is for sign,
and the next four bits are for the integral parts of the number). Line segments are represented
either as two separate points, or as a pair of concatenated points (e.g., a 96-bit bus for a pair of
3D coordinates).

3.2 Modules

The simulator operates on each segment of the input object in a sequence of stages. At a reset,
the initialization module parses each line of the input ROM, passes the user-specified values to the
appropriate modules, and fills a small block of RAM with the segments of the object, specified by
x-, y-, and z-coordinates of the endpoints (see Table 1). When all segments have been written, the
system enters normal operation.

During normal operation, each segment passes through three stages every frame (see Figure 1).
In the first stage, the transformation module reads and processes one segment at a time from the
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coordinates RAM. The module rotates, pans, or zooms around the image depending on user input.
The output of the transformation module is passed on to the next stage, the projection module,
whose purpose is to project a three-dimensional image onto a two-dimensional plane (which, in
this case, is the monitor screen). These two-dimensional coordinates are then passed on to the last
stage, which handles translating these mathematical coordinates into screen pixel coordinates and
displaying the segments.

Because each stage takes different amounts of time – even variable amounts of latency, in the
case of the display module – there must be a control module to coordinate all the other modules.
Otherwise, a faster module can process and output more data than the next module can handle,
resulting in data loss. Each module reports to the control module when it is done with its current
input, and when all are done, the control module advances the data in each stage one step forward.
In other words, the wireframe simulator uses a 3-stage pipeline with variable latency at each stage.

3.2.1 Control

The control module orchestrates data flow between modules by sending and receiving handshaking
signals to and from all modules. The modules report a done signal to the control module to signal
that their output data is ready and valid. When the control module hears done signals from all
modules under its control, it sends a start signal to all modules, allowing data to advance to the
next stage. In addition, the control module receives line and pixel counts from the VGA controller
to issue newframe signals at the end of each frame. This signal is useful for the display buffer
controller to swap the double buffers, for example, and for the transformation module to start
reading segments from RAM back from the beginning again.

The control module also comes into play after the user resets. The user reset only directly
goes to the initialization and control modules; the other modules are reset by the control module
after initialization completes. While the system is in initialization mode, the control module lets
the initialization module read each input from ROM and write each segment to the input RAM.
During this phase, no start signals are sent. When the control module receives a done signal
from the initialization module, it exits initialization mode, sends a module reset signal to all other
modules, and proceeds in normal operation.

3.2.2 Initialization

When the user presses the reset button, the system enters initialization mode. Here, the initializa-
tion module reads and parses one line at a time from a user-provided ROM. The first three digits
indicate the type, while the rest of the data are akin to “arguments.” The eye, viewing plane, and
viewing window boundaries are latched as outputs to the respective modules (see Figure 1). The
rest are definitions for line segments, whose coordinates are copied (minus the 3-digit opcode) to
the coordinates RAM.

When the initialization module reaches opcode 111 representing “end of file”, it stops reading
and sends a “done” signal to the control module. It then holds its address, data, and write enable
lines to the coordinates RAM under high impedance, so that the transformation module may start
accessing it.

3.2.3 Transformation

All rotating, panning, and zooming actions are done by transforming each vertex of the object while
keeping the screen and eye stationary (as opposed to, for example, keeping the object stationary
and moving the eye and viewing planes). The transformation module is responsible for recalculating
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Opcode Description p1 p2

d[98:96] – d[95:80] d[79:64] d[63:48] d[47:32] d[35:16] d[15:0]

000 Eye position xe ye ze – – –
001 View plane, z = a a – – – – –
010 Window boundaries xl yl xh yh – –
100 Line segment x1 y1 z1 x2 y2 z2

111 End of file – – – – – –

Table 1: ROM Input Formats

Figure 1: Module block diagrams

High-level block diagram (top) and a more detailed view of the display modules (bottom)
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all these coordinates. The transformed coordinates are written back into the coordinates RAM to
reflect the updated locations.

Again, users can specify which transformation to apply using buttons and the function select
switch. These inputs are first debounced and synchronized, then passed to a transform request
register. The register holds user requests until next frame. At a newframe signal from the control
module, this register passes its value to the main transformation module and resets its status to
unpushed; otherwise, it continues to output its old value. Without this register, if a user pushes
button in the middle of a frame, some segments would remain in their old positions while the rest
of the segments would move to their transformed positions. By holding off user requests until the
next frame, transformations can be applied to all segments within a frame.

When the control module issues a start signal, the transformation module writes the results
of the previous segment to RAM, and reads and latches the data at the next address. It takes
the outputs from the transform request registers and performs the appropriate transformation,
outputting the result to the projection module. For the sake of simplicity, only one transformation
is performed per frame. In other words, if a user pushes both the “pan left” and “zoom in” buttons
at the same time, only the panning transformation will be done. The transformation module stops
reading from new addresses when it encounters all 1s, signifying end of data. The address counter
is set back to 0 at a newframe signal.

Rotations are performed by a constant angle ε each time, so that cos ε is represented as
16’b111 1111 1111 (≈ 0.99951171875 in our fixed-point representation). Therefore, sin ε =

√
1− cos2 ε ≈

0.000976, or approximately 16’b000 0000 0010. Then, rotating up/down yields the transformed
coordinates (x′, y′, z′), where

(x′, y′, z′) = (x, y cos ε± z sin ε,±y sin ε + z cos ε)

and similarly, rotating left/right yields:

(x′, y′, z′) = (x cos ε± z sin ε, y,±x sin ε + z cos ε)

Panning simply adds or subtracts a constant δ = 0.0625 (i.e., 16’b0000 1000 0000) to the x-
or y- coordinates. Namely, panning up/down gives:

(x′, y′, z′) = (x, y ∓ δ, z)

and panning left/right gives:

(x′, y′, z′) = (x± δ, y, z)

Zooming in and out is just another translation in the z-direction. More specifically, zooming
adds or subtracts 2δ to the z-coordinate. Mathematically, zooming in/out can be described as:

(x′, y′, z′) = (x, y, z ± 2δ)

While zooming in or rotating, there is the possibility that vertices cross the viewing plane. This
situation is allowed, as the user may decide to zoom back out or rotate back later. This case is
handled by the projection module.

3.2.4 Projection

The projection module takes the two 3D coordinates from the transformation module and applies
perspective projection. The initialization module provides the locations of the eye and the viewing
plane.
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Figure 2: Perspective Projection

The idea behind perspective projection. The points of intersection between the lines (rep-
resenting rays of light) and the screen can be solved using simple congruences presented
below.

On a start signal, the projection module latches the output data from the transformation
module; at all other times, the outputs are assumed to be invalid and are ignored. As the viewing
plane is simplified to the form z = a, the point (x, y, z) can be projected onto the plane by solving
the simple proportions (see Figure 2):

xe − xp

xe − x
=

ye − yp

ye − y
=

ze − a

ze − z

where (xp, yp) are the projected coordinates, and (xe, ye, ze) is the location of the viewer. From
this, we see that we can easily solve for (xp, yp):

xp = xe −
ze − a

ze − z
(xe − x)

yp = ye −
ze − a

ze − z
(ye − y)

The values of (xp, yp) are output to the display module.
As mentioned previously, it is certainly possible that the endpoints of the segment are in front

of the screen, i.e., z > a. If both endpoints are in front of the screen, then the entire segment will
not be displayed. If one of the two are in front – say, p1 is in front and p2 is behind, then only
the part of the segment behind the screne is visible. Then, p2 is projected as normally, while the
other endpoint is the intersection of the segment with the viewing plane. The problem becomes
analogous to the one above, with p1 = (x1, y1, z1) replacing (xe, ye, ze).

3.2.5 Display

The display stage is perhaps the complex of the three stages (see Figure 1. It consists of translating
mathematical vector coordinates into pixel bitmaps, then writing these bitmaps into a display
buffer, and finally reading the buffer and displaying its contents.

The display component was by far the most difficult and time-consuming part. See Section 4
for the first (and failed) design of the display module.
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Double buffering and buffer controller. The display information is stored in a double buffer,
so that the line drawing module writes to one of them while the display module is reading reading
from the other. At a newframe signal, the two memory modules swap, so that the now-filled
buffer is read and displayed on screen. A display buffer in RAM is ideal due to the random-access
requirement of the line-drawing module.

The buffers themselves are BRAM modules that are 512 bits wide and 384 rows deep, with
each bit representing a 2x2 square of pixels. Each bit is either 0, for an unlit pixel, or 1, for a lit.
Thus, one entire row of pixels is read or written at a time.

The buffer controller manages which RAM module is displayed from and which is written to.
It keeps an internal ramsel flag that toggles at every newframe signal. This flag determines which
RAM block is accessed by which module. The module interacts with the display and line drawing
modules via single address bus, data bus, and enable lines for each, and relays the address and data
signals to the appropriate RAM blocks.

Writing to an address requires reading existing data from the address, taking its bitwise OR
with the part of the segment to be written, and writing that result back into the address. If data
were written directly, it would overwrite any previous pixels drawn there. However, this also means
that a buffer needs to be zeroed after reading. To do this, after each read by the display module,
each address location is overwritten with 0s. The buffer controller module also takes care of both
the zeroing out and the ORing operations.

Line drawing module. The line drawing module takes the 2D coordinate output from the
projection module, scales it to the display screen (according to (xlower, ylower) and (xupper, yupper)
from the initialization module), and figures out which pixels must be lit. This is by far the most
difficult part, and the code for this module is still not complete.

Let (x1, y1), (x2, y2) denote the two endpoints with y1 < y2, (xl, yl) the lower left corner of
the window in mathematical coordinates, and (xl, yl) the upper right corner. Then, the memory
coordinates (x1,ram, y1,ram), (x2,ram, y2,ram) can be expressed as

(x1,ram, y1,ram) =
(

x1 − xl

xh − xl
· 512,

(
1− y1 − yl

yh − yl

)
· 384

)
,

(x2,ram, y2,ram) =
(

x2 − xl

xh − xl
· 512,

(
1− y2 − yl

yh − yl

)
· 384

)
The main idea is to find the amount x changes in memory coordinates for every memory-

coordinate change in y. Then, the difference between these are filled with 1s, and the entire row is
written to memory at once. Figure 3 shows this graphically. Compared to calculating one pixel at
a time, this potentially saves a lot of memory read/write time overhead, and is not too much more
complicated to implement.

For every change in the y-direction in memory coordinates, y changes by −(yh − yl)/384 in
mathematical coordinates. Similarly, an x-direction change in memory coordinates translates to a
(xh − xl)/512 change in mathematical coordinates. In mathematical coordinates, for every change
in y, x changes by (x2 − x1)/(y2 − y1) (inverse of the slope). Then, for every memory-coordinate
change in y, x changes by

−x2 − x1

y2 − y1
· yh − yl

384

in mathematical coordinates, or

−x2 − x1

y2 − y1
· yh − yl

384
· 512
xh − xl
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Figure 3: Line Drawing between Points

The red squares mark the start and end points, while the blue mark every new change in
y in memory coordinates. The highlighted squares on the second row show the positions
that must be filled in with 1s.

in memory coordinates.
Using these, the module iterates down each value of y until the memory coordinate reaches

y2,ram. Then, x is filled until x2,ram. Both mathematical and screen coordinates are incremented
at each iteration. Even though only the integral part of memory coordinates is relevant for storage
and display, the fractional part is kept to minimize the skew due to rounding.

Display module and VGA controller. The display module presents an address to the buffer
controller, and waits the controller to perform all the interfacing with the memory. The address
simply corresponded to byscreen/2c. Each pixel is colored green if the bxscreen/2cth bit is 1; it is
left black otherwise.

The VGA controller is identical to the controller implemented for Lab 4, except with numbers
(and counter sizes) adjusted for 1024x768 display. Since the display module goes through the
memory controller to read from RAM, there is a 6-cycle delay between the VGA’s screen coordinate
and the RGB output from the display module, not including the 2-cycle DAC delay. Thus, the
hsync, vsync, and blank signals are passed through an 8-cycle delay before arriving at the labkit’s
VGA outputs.

4 Development and Testing

The initial plan was to implement the display modules first. Then, it would be easy to spot bugs in
the transformation and projection modules, as the images would not look right. Given my awkward
choice of fixed-point numerical representation, implementing the display first would give an easier,
faster yes-or-no answer to whether the system was working properly.

Within the display stage, each submodule was implemented right-to-left. The VGA timing was
resolved first, then the display module was set to always output green. Next, the display module
was to interface with the buffer control, which would read from memory. The idea was that the
bottom, most bare-bones layer should be tested first, and gradually add layers on top.

Initially, display buffering was to be done in ZBT RAM, with one bit of data to a pixel. In
addition, the buffer control was only concerned with RAM chip selection and timing. It would have
been up to the display module to zero out previous addresses, and the line drawing module to read
previous data and apply bitwise OR.

Interfacing with the ZBT was when the trouble first began. The first issues appeared when the
ZBT clock deskewer from the course website was added, in which the code refused to synthesize.
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Figure 4: Logic Analyzer Output of ZBT Memory Tester

Probing the memory pins directly using the logic analyzer. The timings are perfectly
consistent with the data sheet, with a low we signal at time 1, and a a value of 0000
driven onto the data bus two cycles later. When the write enable is pulled high, data
read from the same address is most definitely not 0000.

This issue took about a day’s worth of time to resolve, until Gim helped determine that the deskewer
simply was not compatible with the pixel clock generator. The clock deskewer was scrapped, and
an inverted pixel clock was simply used as the RAM clock.

In the meantime, the transform and projection modules were written, and quickly tested with
ModelSim. However, its results were hard to decipher due to the choice of numerical representation.
Panning and zooming seemed to simulate correctly at a quick glance, so these modules were set
aside for the moment to focus on the ZBT again.

The buffer control module was simulated in ModelSim and its timing tweaked to allow consecu-
tive reads and writes while maintaining all timing specifications. When this was synthesized again
along with the display modules, it gave similar results. Finally, a separate memory tester project
was created, with manual data, address, and write enable lines (and initially, a manual clock).
The data seemed to be read correctly, as the same addresses returned the same value each time;
the problem seemed to be that nothing was ever written. The timings and values were then more
closely examined using the logic analyzer. No apparent problems were found; the timings seemed
perfectly consistent with the data sheet (see Figure 4). The memory tester was synthesized on a
different lab kit, with similar results.

Finally, two days before checkoff date, it was decided that no further progress can be made
along this route, and the ZBT RAMs were dismissed in favor of built-in BRAMs. For simplicity,
the RAM is made wide enough so that one row corresponds to entire lines of pixels. In order for
two such BRAM blocks to fit, they were reduced to 512x384, so that each bit encoded four (i.e.,
2x2) pixels of display.

As a result, many modules had to be rewritten; for example, the buffer controller timing no
longer applied. The data width was no longer 36 bits, which also changed the addressing scheme.
Other significant changes were made during the rewrite, such as delegating zeroing and ORing write
data tasks to the buffer controller. These changes made the line drawing and display modules much
simpler, but introduced a slough of bugs too late into the project.

Other unforseen problems began to surface with these new changes, however. For example,
the display module might have worked correctly with the older, 1 pixel/bit design, but the zeroing
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Figure 5: ModelSim Testing Waveforms

Last-minute changes that broke the transformation (left) and projection (right) modules
further.

memory locations is now done by the buffer controller instead of the display module after each
read. Since each memory location accounts for two rows of pixels now, every other line now
appears completely blank. Workarounds for this were attempted, but none were successful.

In the course of writing this paper, more bugs were found in the rotation code of the trans-
formation module. Attempts to fix these seemed to break the existing code even more, further
delaying this paper (see Figure 5).

5 Conclusion and Reflection

This project was riddled with nothing but bugs and issues. However, it had been a rather valuable
experience, as it had taught me exactly how not to approach a problem. For example, complete
overhauls should not be considered so close to a deadline; even though the project may be at a
complete dead-end, the chances of breaking the existing implementation are too likely.

This project was not all grief and anguish, however. At the beginning of the project, there
were no plans of specifically implementing a graphics ”pipeline.” Nevertheless, it was extremely
interesting to see how such a pipelined structure naturally emerged, simply out of my initial effi-
ciency considerations. It is always much more worthwhile to develop these engineering concepts in
a hands-on, interactive way, rather than reading about them in books or learning in lecture.


