

L12: Reconfigurable Logic Architectures

Acknowledgements:

Lecture material adapted from R. Katz, G. Borriello, "Contemporary Logic Design" (second edition), Copyright 2005 Prentice-Hall/Pearson Education.

Frank Honore

PliT

- Discrete devices: relays, transistors (1940s-50s)
- Discrete logic gates (1950s-60s)
- Integrated circuits (1960s-70s)
 e.g. TTL packages: Data Book for 100's of different parts
- Gate Arrays (IBM 1970s)
 - Transistors are pre-placed on the chip & Place and Route software puts the chip together automatically – only program the interconnect (mask programming)
- Software Based Schemes (1970's- present)
 - Run instructions on a general purpose core
- Programmable Logic (1980's to present)
 - □ A chip that be reprogrammed after it has been fabricated
 - □ Examples: PALs, EPROM, EEPROM, PLDs, FPGAs
 - Excellent support for mapping from Verilog
- ASIC Design (1980's to present)
 - Turn Verilog directly into layout using a library of standard cells
 - □ Effective for high-volume and efficient use of silicon area

Reconfigurable Logic

ШіТ

- Based on the fact that any combinational logic can be realized as a sum-of-products
- PALs feature an array of AND-OR gates with programmable interconnect

- Each input pin (and its complement) sent to the AND array
- OR gates for each output can take 8-16 product terms, depending on output pin
- "Macrocell" block provides additional output flexibility...

Cypress PAL CE22V10

From Lattice Semiconductor

	S ₁	S ₀	Output Configuration
ſ	0	0	Registered/Active Low
ſ	0	1	Registered/Active High
ſ	1	0	Combinational/active low
	1	1	Combinational/active high

0 = Programmed EE bit 1 = Erased (charged) EE bit

 Outputs may be registered or combinational, positive or inverted

RAM Based Field Programmable Logic - Xilinx

The Xilinx 4000 CLB

Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

Introductory Digital Systems Laboratory

14117

Two 4-input Functions, Registered Output and a Two Input Function

Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

Introductory Digital Systems Laboratory

5-input Function, Combinational Output

Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

- N-LUT direct implementation of a truth table: any function of n-inputs.
- N-LUT requires 2^N storage elements (latches)
- N-inputs select one latch location (like a memory)

14117

Configuring the CLB as a RAM

Read is same a LUT Function!

Xilinx 4000 Interconnect

Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs)

Xilinx 4000 Interconnect Details

Wires are not ideal!

Xilinx 4000 Flexible IOB

Add Bells & Whistles

Courtesy of David B. Parlour, ISSCC 2004 Tutorial, "The Reality and Promise of Reconfigurable Computing in Digital Signal Processing"

The Virtex II CLB (Half Slice Shown)

Шіт

Introductory Digital Systems Laboratory

Adder Implementation

Pliī

Carry Chain

Introductory Digital Systems Laboratory

Virtex II Features

Double Data Rate registers

Embedded Multiplier

Digital Clock Manager

Block SelectRAM

Hii

The Latest Generation: Virtex-II Pro

Hardwired multipliers High-speed I/O

Courtesy Xilinx

Altera's New Stratix Architecture

Pliī

L12: 6.111 Spring 2007

- Technology Mapping: Schematic/HDL to Physical Logic units
- Compile functions into basic LUT-based groups (function of target architecture)


```
always @(posedge Clock or negedge Reset)

begin

if (! Reset)

q <= 0;

else

q <= (a & b & c) | (b & d);

end
```

Design Flow – Placement & Route

Placement – assign logic location on a particular device

Routing – iterative process to connect CLB inputs/outputs and IOBs. Optimizes critical path delay – can take hours or days for large, dense designs

Iterate placement if timing not met

Satisfy timing? → Generate Bitstream to config device

Challenge! Cannot use full chip for reasonable speeds (wires are not ideal).

Typically no more than 50% utilization.

Introductory Digital Systems Laboratory

Example: Verilog to FPGA

Logic Emulation

FPGA-based Emulator

(courtesy of IKOS)

Prototyping

- Ensemble of gate arrays used to emulate a circuit to be manufactured
- Get more/better/faster debugging done than with simulation

Reconfigurable hardware

- One hardware block used to implement more than one function
- Special-purpose computation engines
 - Hardware dedicated to solving one problem (or class of problems)
 - Accelerators attached to general-purpose computers (e.g., in a cell phone!)

- FPGA provide a flexible platform for implementing digital computing
- A rich set of macros and I/Os supported (multipliers, block RAMS, ROMS, high-speed I/O)
- A wide range of applications from prototyping (to validate a design before ASIC mapping) to high-performance spatial computing
- Interconnects are a major bottleneck (physical design and locality are important considerations)

"College students will study concurrent programming instead of "C" as their first

computing experience."

-- David B. Parlour, ISSCC 2004 Tutorial