2-D Mapping with Sonar

Leon Fay
Miranda Ha
Vinith Misra
Not Chris

Basic Sonar

- Ultrasound cannot be heard by people
- Small wavelength=> good for shortdistances
- Time of flight can be used to estimate distance

Basic Mapping

- Rotate receiver/ transmitter to measure distance at every angle
- Slow update rates because of many distance measurements

Phase Array

- Use multiple receivers, measure different angles using phase relationships
- No moving parts => more reliable
- Faster update rate

Basic Sonar Basic Map Phase Array

Applications

- Draw a top view map of environment
- Security system that detects changes in surroundings

Transmit/ Data- Control/ Display/ Process Interface

Simplified Block Diagram

Datagathering Process Interface

Control/

Display/

Transmit/Receive

Transmit/Receive

- Transmit a single
 40-kHz sine wave
 pulse (generated
 from stored values
 played through DAC)
- Multiple receivers
- Enable signals from Control Module for transmitting and receiving

Transmit/ Receive

Control/ Process Interface

Display/

Data-gathering

Data-gathering

- Samples data from receivers at intervals dictated by Control Module
- Data stored in one of two RAMs
- Simultaneous storage and processing of data— "double buffering"

Control/Process

Receive

Control/Process

- Control Module gives Processing Module an angle; **Processing Module** gives back distance at that angle
- Post-Processor gets angle/distance pairs ready for display and tells Control Module if more data is needed

Transmit/ Data-Receive

Control/ gathering Process

Display/Interface

Display/Interface

- Display Module gives VGA controller appropriate RGB signals
- Main purpose is to draw a 2-D, colorcoded map of the environment
- RS232 Module is for debugging
- User can choose what is displayed

Sines, Chirps, and Pulses

•What kind of signal to transmit?

- Steady Sine Wave
- Chirp (linearly changing frequency)
- Short pulsed sine wave

Game Plan

Sines, Chirps, and Pulses

•What kind of signal to transmit?

- Steady Sine Wave
- Chirp (linearly changing frequency)
- Short pulsed sine wave

Game Plan

Send a pulse, receive attenuated & shifted signal

Game Plan

- •For each reflection, different receivers have similar attenuation, but slight phase shifts.
- Can expand as 2 delays:
 - Object to receiver
 - 1 DISTANCE
 - Receiver 1 toReceiver N -

DIRECTION

The Process

- 1. Find where a certain phase relation is most likely to have occurred (similar to matched filtering)
- 2. Record the delay to this region of the signal
- Distance = (half delay to max) *
 (speed of sound)

What To Game
Transmit Plan

The Process

After post-processing, matches almost perfectly in simulation.