L6: FSMs and Synchronization

it

Lecture material courtesy of Rex Min

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 1

it Asynchronous Inputs in Sequential Systems

What about external signals?

I LI

Clock

Sequential System

AN

_>

Can’t guarantee
setup and hold
times will be met!

When an asynchronous signal causes a setup/hold
violation...

Q

D_ |

—
A

Clock

Transition is missed
on first clock cycle,
but caught on next
clock cycle.

L6: 6.111 Spring 2006

J

N

L

|

Transition is caught
on first clock cycle.

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

Introductory Digital Systems Laboratory

IMlir Asynchronous Inputs in Sequential Systems hir

All of them can be, if more than one happens
simultaneously within the same circulit.

ldea: ensure that external signals directly feed
exactly one flip-flop

Clocked
. Synchronous

T 1 //V> Sequential System

T—oc DQX

Clock

AN

This prevents the possibility of I and Il occurring in different places in
the circuit, but what about metastability?

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 3

lllir Handling Metastability i

m Preventing metastability turns out to be an impossible problem

m High gain of digital devices makes it likely that metastable conditions will
resolve themselves quickly

m Solution to metastability: allow time for signals to stabilize

Likeley to be Very unlikely to Extremely unlikely
metastable be metastable for to be metastable for
right after >1 clock cycle >2 clock cycle

sampling \ \ /
0 ‘ 4' Complicated
B

—0 o D QD QHD Q Sequential Logic
L System

Clock

How many registers are necessary?
m Depends on many design parameters(clock speed, device speeds, ...)
m In 6.111, one or maybe two synchronization registers is sufficient

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 4

Uy Finite State Machines i

m Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “states” of operation

m At each clock edge, combinational logic computes outputs and next
state as a function of inputs and present state

inputs outputs
+ +
present next
state state

CLK

Introductory Digital Systems Laboratory

L6: 6.111 Spring 2006

llir Two Types of FSMs

Moore and Mealy FSMs are distinguished by their output generation

Moore FSM:

next

state
S+

Inputs outputs
Xg-+-Xp n Yk = fk(S)
CLK
present state S
Mealy FSM:
direct combinational path! outputS

iInputs

Xg--- X,

S

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory

Yie = fi(S, Xo.-:Xp)

lllir Design Example: Level-to-Pulse i

m A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.

m In other words, it’s a synchronous rising-
edge detector.

m Sample uses:

O Buttons and switches pressed by humans for
arbitrary periods of time

O Single-cycle enable signals for counters

Level to
—L Pulse P —
S Converter out P brod
: ...output P produces a
Whenever mput_ L goes |_ single pulse, one clock
from low to high... : :
CLK period wide.

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 7

lllir State Transition Diagrams i

m Block diagram of desired system:

Synchronizer Edge Detector
unsynchronized 5 Level to
user input Q D Q L Pulse Pp—

CLK

m State transition diagram is a useful FSM representation and design aid

“if L=1 at the clock edge, +— L
then jump to state 01.”

=1 L=1 Binary values of states

This is the output that results from
this state. (Moore or Mealy?)

“if L=0 at the clock edge,
then stay in state 00.”

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 8

v Logic Derivation for a Moore FSM i
m Transition diagram is readily converted to a Current Next
state transition table (just a truth table) state | M| state | OUt
O O[O0l 0 O] O
O o|1]0 1] 0
- o 1|/o|lo o] 1
o 1 (1] 1 1] 1
1 1/0l0 0] O
1 1|11 1] 0
m Combinational logic may be derived by Karnaugh maps
s,s, 1Or S;™
L 00 01 11 10
ofoioioix
1]0:1:1:X
g forP
s,s, fOrSg™ s\ 0 1
01]0:0:0:X
. — 1]11:0
111:1:1:X S1" =L P=S5,5
Syt =L

L6: 6.111 Spring 2006

Introductory Digital Systems Laboratory

v Moore Level-to-Pulse Converter Inir

next
y 4 st;te Ay Ay
|)r(1puxts =) Comb. —I—V D Flip- @ Comb. ==y OULPULS
o Logic Flops Logic Y = Ti(S)

CLK m3>
present state S

S;"=LS, _a

SO+ =L P S180

Moore FSM circuit implementation of level-to-pulse converter:

Syt S

L D Q) P
CLK—> O
) D
| Q
J St | s
> Q

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 10

lllir Design of a Mealy Level-to-Pulse i

direct combinational path!

S

m Since outputs are determined by state and inputs, Mealy FSMs may
need fewer states than Moore FSM implementations

1. When L=1 and S=0, this output is

asserted immediately and until the
state transition occurs (or L changes). L _j@

P

Clock
State

L=0| P=0

Output transitions
immediately.

L=1| P=0 State transitions at the

clock edge.

2. After the transition to S=1 and as long
as L remains at 1, this output is O.

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 11

lllir Mealy Level-to-Pulse Converter

Pres. Next
State State Out

kP O O
k O -, O

L=0|P=0 L=1|P=0

O~ O
o O+~ O

Mealy FSM circuit implementation of level-to-pulse converter:

D

S* S

Ol O

D
CLK —>

S
m FSM’s state simply remembers the previous value of L

m Circuit benefits from the Mealy FSM’s implicit single-cycle
assertion of outputs during state transitions

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory

12

lllir Moore/Mealy Trade-Offs i

m Remember that the difference is in the output:
O Moore outputs are based on state only

O Mealy outputs are based on state and input
O Therefore, Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P Mealy: immediate assertion of P
L__/ L

P P \
Clock Clock \

State[0] State

m Compared to a Moore FSM, a Mealy FSM might...
O Be more difficult to conceptualize and design
O Have fewer states

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 13

i Review: FSM Timing Requirements llir

m Timing requirements for FSM are identical to any generic
sequential system with feedback

Minimum Clock Period Minimum Delay

inputs outputs inputs outputs
+ + + +
present next present s next
State state State * gtate

(CLK — CLK wmmminn> o SIEESSSE., . ..o |
I\
A
T> T + Tloglc Tsu ch,cd T Tlogic,cd > Thold

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 14

i The 6.111 Vending Machine

m Lab assistants demand a new
soda machine for the 6.111 lab.
You design the FSM controller.

m All selections are $0.30.

m The machine makes change.
(Dimes and nickels only.)

m Inputs: limit 1 per clock
O Q - quarter inserted
O D - dime inserted
O N - nickel inserted

m Outputs: limit 1 per clock
O DC - dispense can
O DD - dispense dime
O DN - dispense nickel

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory

15

lllir What States are in the System? i

m A starting (idle) state:

m A state for each possible amount of money captured:

m What's the maximum amount of money captured before purchase?
25 cents (just shy of a purchase) + one quarter (largest coin)

m States to dispense change (one per coin dispensed):

e —GD— @D

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 16

Here’s a first cut at the

state transition diagram.

See a better way?
So do we.
Don’t go away...

L6: 6.111 Spring 2006

A Moore Vender

Introductory Digital Systems Laboratory

Ihir State Reduction i

Duplicate states have:

m The same outputs, and
m The same transitions

There are two duplicates
in our original diagram.

17 states 15 states
5 state bits 4 state bits

18

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory

llir Verilog for the Moore Vender Ilir

=) Comb. —'n—>D State @
Logic Register
CLK=>

FSMs are easy in Verilog.
Simply write one of each:

m State register
(sequential always block)

m Next-state
combinational logic
(comb. always block with case)

m Qutput combinational

logic block
(comb. always block or assign
statements)

module mooreVender (N, D, Q, DC, DN, DD,
clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
output [3:0] state;
reg [3:0] state, next;

States defined with parameter keyword

parameter IDLE = O0;

parameter GOT 5c¢c = 1
parameter GOT 10c
parameter GOT 15c
parameter GOT 20c
parameter GOT_ 25c
parameter GOT 30c
parameter GOT 35c
parameter GOT 40c
parameter GOT 45c
parameter GOT 50c
parameter RETURN 20c
parameter RETURN 15c 12;
parameter RETURN 10c 13;
parameter RETURN 5c = 14;

Ne Ne Ne Ne Ne Ne N

P WOV 00 JO0 Ul b WDN -~

o ~

11;

State register defined with sequential
always block

always @ (posedge clk or negedge reset)
if (!reset) state <= IDLE;
else state <= next;

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 19

Verilog for the Moore Vender

Next-state logic within a
combinational always block

always @ (state or
case (state)

IDLE: if

else if

else

else

GOT_b5c: if

else if

else

else

GOT 10c: if

else if

else

else

GOT 15c: if

else if

else

else

GOT 20c: if

else if

else

else

L6: 6.111 Spring 2006

N or D or Q) begin

(Q) next GOT_25c¢;
(D) next GOT_10c¢;
if (N) next = GOT 5c;
next = IDLE;

(Q) next = GOT 30c;
(D) next = GOT 15c;
if (N) next = GOT 10c;

next = GOT_5c;

(Q) next = GOT 35c;
(D) next = GOT_20c;

if (N) next = GOT 15c;
next = GOT 10c;

(Q) next = GOT 40c;
(D) next = GOT_ 25c;

if (N) next = GOT 20c;
next = GOT 15c;

(Q) next = GOT 45c;
(D) next = GOT_30c;
if (N) next = GOT 25c;

next = GOT 20c;

GOT_25c: if (
else
e

Q) next
if (D)
lse if

= GOT_50c¢;
next = GOT_35c;
(N) next = GOT 30c;

else next = GOT_25c;

GOT _30c: next =
GOT_35c: next =
GOT _40c: next =
GOT _45c: next =
GOT _50c: next =
RETURN 20c: next
RETURN_ 15c: next
RETURN 10c: next
RETURN 5c: next
default: next = I
endcase

end

IDLE;
RETURN 5c;
RETURN 10c;
RETURN 15c;
RETURN 20c;

= RETURN 10c;
= RETURN 5c;
= IDLE;

= IDLE;

DLE;

Combinational output assignment

assign DC = (state == GOT_30c || state == GOT 35c ||
state == GOT 40c || state == GOT 45c ||
state == GOT_50c) ;

assign DN = (state == RETURN 5c);

assign DD = (state == RETURN 20c || state == RETURN 15c ||
state == RETURN 10c) ;

endmodule

Introductory Digital Systems Laboratory

20

Uy Simulation of Moore Vender i

=+ wave - default

File Edit WYiew Insert Format Tools Window

FEE S BRAIRNTEA D QSRR EIEIEE

':‘! ."!tb oo |::|L:;:_ 0 J—l l

,! .-'fll:l_rru:n_u:ura.-":s:ta{.&_..

Now 1000000 p: | R R R % R R I i P L R
Curzar 1 Ops ‘
4 [»] 4 | v] | = |
| 26462 ps to 993573 ps | /é

Output @

State

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 21

Uity Coding Alternative: Two Blocks i

Next-state and output logic combined into a single always block

always @ (state or N or D or Q) begin

GOT 30c: begin
DC = 1; next = IDLE;
end
GOT_35c: begin

DC = 0; DD = 0; DN = 0; // defaults

case (state)

end
GOT 50c: begin
DC = 1; next = RETURN 20c;

IDLE: if (Q) next = GOT 25c;
else if (D) next = GOT 10c; BENENN next = RETURN_5c;
else 1f (N) next = GOT_SC; end'
else next = IDLE; B GOT_40c: Dbeglhy
DC = 1; next = RETURN 10c;
GOT 5c: if (Q) next = GOT 30c; end
T else if (D) next = GOT 15c; GOT_45c: begin
else if (N) next = GOT_10c; DC = 1; next = RETURN_15c¢;
t =

else nex GOT 5c¢;

GOT_10c: if (Q) next = GOT_35c; 3
else if (D) next = GOT 20c; en
else if (N) next = GOT_15c;

t =

RETURN 20c: begin

else nex GOT 10c;
- DD = 1; next = RETURN 10c;
GOT 15c: if (Q) next = GOT 40c; end
"~ else if (D) next = GOT 25c; RETURN_15c: begin
else if (N) next = GOT 20c; DDRSIA next = RETURN_5c;
else next = GOT 15c; B endl
- RETURN 10c: begin
GOT 20c: if (Q) next = GOT_45c; DDRSSEA next = IDLE;
~ else if (D) next = GOT_3OC; endl
else if (N) next = GOT 25c; RETURN_5c: begin
else next = GOT 20c; DNSSSIS next = IDLE;
- end
GOT 25c: if (Q) next = GOT 50c;
~ else if (D) next = GOT_350; default: next = IDLE;
else if (N) next = GOT:BOc; endcase
else next = GOT 25c; end

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 22

v FSM Qutput Glitching

m FSM state bits may not transition at precisely the same time

m Combinational logic for outputs may contain hazards
m Result: your FSM outputs may glitch!

...causing the
during this state ...the state registers may DC output to
transition... transtion like this... glitch like this!
@ o
Dot 0110 - 1| glitch
= :
assign DC = (state == GOT 30c || state == GOT 35c ||
state == GOT 40c || state == GOT 45c ||
state == GOT 50c);

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent soda!

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory

23

it Registered FSM Outputs are Glitch-Free i

registered
outputs

inputs

present state S

reg DC,DN,DD;

m Move output

// Sequential always block for state assignment

generatlon |nt0 the always @ (posedge clk or negedge reset) begin

. if (l!reset) state <= IDLE;

sequential always clse it (clk) state <= next;
bIOCk DC <= (next == GOT 30c || next == GOT_35c ||
next == GOT 40c || next == GOT 45c ||

m Calculate outputs next == GOT_50c) ;
DN <= (next == RETURN 5c);
based on next state DD <= (next == RETURN 20c || next == RETURN 15c ||
- next == RETURN_10c);
end

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 24

it Mealy Vender (covered in Recitation) i

A Mealy machine can eliminate states devoted solely
to holding an output value.

D=1 * | DD=1
* | DN=1

Q=1|DC=1

D=1 Q=1|DC=1

Q=1]|DC=1 | DD=1

D=1 ”
D=1 | DC=1 Q=1|DC=1

DC=1 *|DD:1

N=1 | DC=1 Q=1|DC=1

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 25

i Verilog for Mealy FSM

module mealyVender (N, D, Q, DC, DN, DD, clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
reg DC, DN, DD;

output [3:0] state;
reg [3:0] state, next;

parameter IDLE = O0;
parameter GOT 5c = 1
parameter GOT 10c =
parameter GOT 15c =
parameter GOT 20c =
parameter GOT_ 25c =
parameter RETURN 20c
parameter RETURN 15c
parameter RETURN 10c
parameter RETURN 5c = 9;

~e o~

U W N~

1 ~e

6
7
8

o~

A

// Sequential always block for state assignment
always @ (posedge clk or negedge reset)

if (!reset) state <= IDLE;

else state <= next;

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory

26

always @ (state

DC = 0; DN =

case (state)
IDLE:

else

else
else

GOT 5c:
else
else
else

GOT 10c:
else
else
else

GOT 15c:
else
else

else

GOT 20c:
else

else
else

L6: 6.111 Spring 2006

Verilog for Mealy FSM

or N or D or Q) begin

0; DD = 0; // defaults
if (Q) next = GOT_25c;
if (D) next = GOT_10c;
if (N) next = GOT_ 5c;
next = IDLE;

if (Q) begin
DC = 1; next = IDLE;
end

if (D) next = GOT_15c;
if (N) next = GOT_10c;
next = GOT 5c;

DC = 1; next = RETURN 5c;

if (D) next = GOT_20c;
if (N) next = GOT_15c;
next = GOT 10c;

if (Q) begin
DC = 1; next = RETURN 10c;
end
if (D) next = GOT_25c;
if (N) next = GOT_20c;
next = GOT 15c;

if (Q) begin
DC = 1; next = RETURN 15c;

end
if (D) begin
DC

end
if (N) next = GOT_25c;
next = GOT 20c;

For state GOT_5c, output DC
IS only asserted iIf Q=1

1l; next = IDLE;

GOT_25c: if (Q) begin
DC = 1; next
end

else if (D) begin

RETURN 20c;

DC = 1; next = RETURN 5c;
end
else if (N) begin
DC = 1; next = IDLE;

end
else next = GOT 25c;

RETURN 20c: begin
DD = 1; next = RETURN 10c;
end
RETURN 15c: begin
DD = 1; next = RETURN 5c;
end
RETURN_ 10c: Dbegin
DD = 1; next = IDLE;
end
RETURN_ 5c: begin
DN = 1; next = IDLE;
end

default: next = IDLE;
endcase

end

endmodule

Introductory Digital Systems Laboratory

27

llir Simulation of Mealy Vender Ilir

=t wave - default g@gl

File Edit Miew Insert Formak Tools Window
EE sREMH

Mb_mealy/clk 0
et 2=l 1
& Ab mealy/d 0
/D 1]
1]

s
&
)
&
&
e

A1 b mealy/state 0

Cusorl | Dps

‘ TR | -l
| 26641 ps 10 912149 ps | y

State - ... -

Cgottse)
Output @ ‘ ‘

(note: outputs should be registered)

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 28

R

Delay Estimation : Simple RC Networks

Vob_

-

.||—| —

(a) Low-to-high

VDD
on

L6: 6.111 Spring 2006

Vout

O

G

Vb
(b) High-to-low
Vout
+—O
— C_

Ron 1

Introductory Digital Systems Laboratory

Vin (

/

/ 50%

A
VOUt

—
=)
J I
N —

T

50%

review

Vin

v out(t) — (1 o e_t/T) V
t,=In (2) © = 0.69 RC

29

Uy Clocks are Not Perfect: Clock Skew

CLout
é)
nfp o Combinational l D Ql—
Logic
T .) —T—
I > Wire delay ClkD
Clk
CLK |
CLKD |
030

T> T + Tloglc su -0
ch,cd + Tlogic,cd > Thold +0

L6: 6.111 Spring 2006

Introductory Digital Systems Laboratory

30

lllir Positive and Negative Skew i
Tokt+ 0
In R Combinational "2 Combinational R3 Tewk
—bQ Logic D Q omLé)ré?gona D Q>+ ax1 @ : ®
AN AN JAN >
CLK At At 1\ t
CLKl; CLKZ: CLK3 LK @ @
delay delay e -
(a) Positive skew
Launching edge arrives before the receiving edge
In =1 Combinational "2 Combinational R3 Tew*
ompinationa CLK
—™DbQ Logic D Q Logic D Q> - 0 T g
JAN A A CLK1
f ek A teke A toiks]
-y — -
delay delay CLK cke @ ? @
(b) Negative skew
Recelving edge arrives before the launching edge
L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 31

v Clocks are Not Perfect: Clock Jitter Inir

® Tek ®
ck @ T @ | [*|lier
4
‘tjitte: ©
REGS Combinational
In ' Logic
ZAN
CLK,[|t tlogic
c-q» "c-q, cd t1ogic, cd
tsu, thold
tjitter
— 2t.. + .+
TeLk 2tJltter>tc—q tIoglc tsy
or
T>t t

cC—Q * tIogic Ty +2tjitter

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 32

Ihir Summary i

m Synchronize all asynchronous inputs
OUse two back to back registers

m Two types of Finite State Machines introduced
O Moore — outputs are a function of current state
O Mealy — outputs a function of current state and input

m A standard template can be used for coding FSMs

m Register outputs of combinational logic for critical
control signals

m Clock skew and jitter are important considerations

L6: 6.111 Spring 2006 Introductory Digital Systems Laboratory 33

	L6: FSMs and Synchronization
	Asynchronous Inputs in Sequential Systems
	Asynchronous Inputs in Sequential Systems
	Handling Metastability
	Finite State Machines
	Two Types of FSMs
	Design Example: Level-to-Pulse
	State Transition Diagrams
	Logic Derivation for a Moore FSM
	Moore Level-to-Pulse Converter
	Design of a Mealy Level-to-Pulse
	Mealy Level-to-Pulse Converter
	Moore/Mealy Trade-Offs
	Review: FSM Timing Requirements
	The 6.111 Vending Machine
	What States are in the System?
	A Moore Vender
	State Reduction
	Verilog for the Moore Vender
	Verilog for the Moore Vender
	Simulation of Moore Vender
	Coding Alternative: Two Blocks
	FSM Output Glitching
	Registered FSM Outputs are Glitch-Free
	Mealy Vender (covered in Recitation)
	Verilog for Mealy FSM
	Verilog for Mealy FSM
	Simulation of Mealy Vender
	Delay Estimation : Simple RC Networks
	Clocks are Not Perfect: Clock Skew
	Positive and Negative Skew
	Clocks are Not Perfect: Clock Jitter
	Summary

