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Problem #1: Power Dissipation/HeatProblem #1: Power Dissipation/Heat
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Courtesy Intel (S. Borkar)

How do you cool these chips??How do you cool these chips??

chip

heat sink
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Problem #2: Energy ConsumptionProblem #2: Energy Consumption
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No Moore’s law for batteries…
Today:  Understand where power goes

and ways to manage it

What can One Joule
of energy do?

Send a 1 
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Dynamic Energy DissipationDynamic Energy Dissipation
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The Transition Activity Factor The Transition Activity Factor αα00−−>>11

Current 
Input

Next 
Input

Output 
Transition

00 00 1 −> 1
00 01 1 −> 1
00 10 1 −> 1
00 11 1 −> 0
01 00 1 −> 1
01 01 1 −> 1
01 10 1 −> 1
01 11 1 −> 0
10 00 1 −> 1
10 01 1 −> 1
10 10 1 −> 1
10 11 1 −> 0
11 00 0 −> 1
11 01 0 −> 1
11 10 0 −> 1
11 11 0 −> 0

Z
A
B

Assume inputs (A,B) arrive 
at f and are uniformly 
distributed
What is the average 
power dissipation?

α0−>1 = 3/16

P = α0−>1 CL VDD
2  f
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Junction (Silicon) TemperatureJunction (Silicon) Temperature

Simple Scenario Realistic Scenario

Tj-Ta= RθJA PD

Silicon
Sink
Case

Silicon
TJ

TC

TS

TATJRθJA is the thermal resistance 
between silicon and Ambient

RθJCPD
TJ

RθJA

TC

RθCSPD
TS

Tj= Ta + RθJA PD

TA RθSA

TA

RθCA = RθCS + RθSA Make this as low as possible
is minimized by facilitating heat transfer 

(bolt case to extended metal surface – heat sink)
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Intel Pentium 4 Thermal GuidelinesIntel Pentium 4 Thermal Guidelines

Pentium 4 @ 3.06 GHz dissipates 81.8W!
Maximum TC = 69 °C
RCA < 0.23 °C/W for 50 C ambient
Typical chips dissipate 0.5-1W (cheap 
packages without forced air cooling)

Execution 
core

120oC

Cache
70°C

Integer 
& FP 
ALUs

Temp
(oC)

Courtesy of Intel 
(Ram Krishnamurthy)

http://www.dansdata.com/images/coolercomp/acglacier500.jpg
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Power Reduction StrategiesPower Reduction Strategies

P = α0−>1 CL VDD
2  f

Reduce Transition Activity or Switching 
Events
Reduce Capacitance (e.g., keep wires 
short)
Reduce Power Supply Voltage
Frequency is typically fixed by the 
application, though this can be adjusted to 
control power

Optimize at all levels of design hierarchyOptimize at all levels of design hierarchy
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Clock Gating is a Good Idea!Clock Gating is a Good Idea!

+

X

Global Clock Adder Clock

Multiplier Clock

Clock gating reduces activity
and is the most common low-power

technique used today

Adder Off

Enable_Adder

Multiplier On

Enable_Multiplier

100’s of different clocks in a microprocessor

Clock Gating Reduces Energy, does it reduce Power?Clock Gating Reduces Energy, does it reduce Power?
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Does your GHz Processor run at a GHz? Does your GHz Processor run at a GHz? 

Processor

Thermal
Sensor

Chip
Activity 
Control

Note that there is a difference between average and peak 
power

On-chip thermal sensor (diode based), measures the silicon 
temperature

If the silicon junction gets too hot (say 125 °C), then the 
activity is reduced (e.g., reduce clock rate or use clock gating)

Use of Thermal FeedbackUse of Thermal Feedback
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Power Supply ResonancePower Supply Resonance

Lboard Lpackage Rgrid

Switching
currents

Board decap

On-die
decap

Courtesy of Motorola
(David Blaauw)

Courtesy of MotorolaCourtesy of Motorola
(David Blaauw)(David Blaauw)

Can write a Virus to Activate Can write a Virus to Activate 

Power Supply Resonance!Power Supply Resonance!

200Mhz
Design
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Number Representation:Number Representation:
TwoTwo’’s Complement vs. Sign Magnitudes Complement vs. Sign Magnitude

Two’s complement Sign-Magnitude
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Consider a 16 bit bus where inputs toggles
between +1 and –1 (i.e., a small noise input)
Which representation is more energy efficient?
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Time Sharing is a Bad IdeaTime Sharing is a Bad Idea

2

Time Sharing Increases Switching ActivityTime Sharing Increases Switching Activity
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Not just a 6Not just a 6--1 Issue: 1 Issue: ““CoolCool”” Software ???Software ???

CPU

0111111100000000

0111111100000001

0111111100000010

0111111100000011

1000000000000000

1000000000000001

1000000000000010

1000000000000011

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]
b[2]
b[3]

float a [256], b[256];
float pi= 3.14;

for (i = 0; i < 255; i++) {a[i] = sin(pi * i /256);}
for (i = 0; i < 255; i++) {b[i] = cos(pi * i /256);}

float a [256], b[256];
float pi= 3.14;

for (i = 0; i < 255; i++) {
a[i] = sin(pi * i /256);
b[i] = cos(pi * i /256);

}

address

MEMORY address

16

2(8)+2(2+4+8+16+32+64+128+256)
= 1030 transitions

512(8)+2+4+8+16+32+64+128+256
= 4607 bit transitions
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GlitchingGlitching TransitionsTransitions

Balancing paths reduces glitching transitions
Structures such as multipliers have lot of glitching transitions
Keeping logic depths short (e.g., pipelining) reduces glitching
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Reduce Supply Voltage : But is it Free?Reduce Supply Voltage : But is it Free?
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Transistors Are FreeTransistors Are Free……
(What do you do with a Billion Transistors?)(What do you do with a Billion Transistors?)

OUT

IN

X

Pserial = Cmult 22 f P

f =1GHz
VDD=2V 

parallel = (2Cmult 12 f /2) = Pserial/4

X X

INf = 500Mhz
VDD=1V 

f = 500Mhz
VDD=1V 

IN

SELECT

Trade Area for Low PowerTrade Area for Low Power

OUT
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Algorithmic WorkloadAlgorithmic Workload

Receiver just updatesCompare Current Image...

...to Previous Image
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Exploit Time Varying Algorithmic WorkloadExploit Time Varying Algorithmic Workload
To Vary the Power Supply Voltage To Vary the Power Supply Voltage 
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Dynamic Voltage Scaling (DVS)Dynamic Voltage Scaling (DVS)
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DVS on a ProcessorDVS on a Processor

Digitally adjustable DC-DC 
converter powers SA-1110 core

µOS selects appropriate clock frequency 
based on workload and latency constraints

SA-1110

Control

µOS

VoutController

3.6V

5



L16: 6.111 Spring 2006 21Introductory Digital Systems Laboratory

Hardware vs. SoftwareHardware vs. Software
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Embedded 
Processor

DSP

Direct Mapped
Hardware

FPGA0.1-1pJ/Op

Energy/OperationCourtesy of R. Brodersen, J. Rabaey, TI, ARM/StrongARM
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Energy Efficiency of SoftwareEnergy Efficiency of Software
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““SoftwareSoftware”” Energy Dissipation has Large OverheadEnergy Dissipation has Large Overhead
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Trends: Leakage and Power GatingTrends: Leakage and Power Gating
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Trends: Energy ScavengingTrends: Energy Scavenging

MEMS Generator Power Harvesting Shoes

Joe Paradiso
(Media Lab)Jose Mur Miranda/ 

Jeff Lang

After 3-6 steps, it provides 3 mA
for 0.5 sec

~10mW

Vibration-to-Electric 
Conversion

~ 10µW
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