Hand-Drawn Circuit
Recognition

Ravi Palakodety and Vijay Shah
6.111 Final Project
TA: Jenny Lee
May 2005

Abstract: This project will develop a tool for recognizingnaponents, their values, and their
connectivities from a hand-drawn circuit, and wile this knowledge to generate a primitive
SPICE netlist. The user will draw his circuit on& 8 grid, with each component centered
and sized to fill the block. The user’s availabbenponents include resistors, capacitors,
transistors, voltage sources, power supplies, gféeirminals, and connectivity nodes. We
will display the original hand-drawn circuit, a @it with hand-drawn components replaced

by computer generated pictures of components, lantekt of the SPICE netlist onto the
screen.

1. Introduction

For our 6.111 final project, we designed a toot geaforms recognition of hand-
drawn circuits. The user first draws his circuitapspecial piece of grid paper. We then scan
the picture and resize to 512x512 pixels using cercral software. Vijay designed PERL
scripts to convert this bitmap to a csv file whistused to create a ROM on our FPGA. Our
code then recognizes the various components antectans and generates a SPICE netlist
that can be used to simulate the behavior of tloaiiti Finally, we display on an LCD
monitor the netlist and an idealized version ofc¢heuit, with hand-drawn components
replaced with computer generated ones. The nitledso sent in text form through the RS-
232 port. This project will smoothly take a circdesigner on the path from conception of
the circuit to a usable SPICE netlist, withoutdides typing step.

The circuit recognition problem will prove extreljmaseful to analog circuit
designers. Currently, it is fairly time consumiegmove from the original "napkin-sketch"
circuit to the SPICE netlist required to simuldte tircuit. Also, it is fairly easy to make a
mistake in typing the netlist, which then requieasra time in debugging the netlist. Tools
such as CircuitMaker exist to automate the germraif the netlist. However, the engineer
still needs to create his circuit in CircuitMakesjng a drag-and-drop interface with a
separate wiring stage. This tool promises sulistaithe savings by simply requiring the
engineer to scan his sketch using a standard scakmally, this project will interest the Al
community, many of whom are exploring projects sastismart" paper. This project offers
the possibilities of making your paper think likeuy at least in the field of image recognition.

Our project can be broken into three major comptmamage recognition, netlist
generation, and video output. The project wagsirad in a major/minor FSM structure,
with Ravi handling the image recognition and Vifandling the netlist generation and video
output.

2. Design Description

2.1. Recognition Stage

The image recognition stage is implemented usimgg@r/minor FSM design. The
major FSM starts the three minor FSMs (memory hagdcomponent recognition, and text
recognition) and stores the its results in a shewM. The choose_component minor FSM
is itself structured as a major/minor FSM, with@pkzed minor FSMs determining certain
types of components.

2.1.a. Major FSM (raviFSM.v)

The image recognition major FSM performs five mdiimctions. First for each of the
64 grid blocks, the major FSM extracts the rows esldmns from the image ROM to a row
and column RAM. These RAMs are then used in corapbrecognition and text recognition
stages. Finally, the results of these recognpioases are written to a shared results RAM.
After this sequence completes 64 times, the me§di Eycles through the 64 address of the

results RAM, allowing for simple debugging. Théldwing table describes the states of this

FSM.

State

Description

Idle

On reset of system, move to mem_handle0 artreicognition process at
grid block 0.

Mem_handleO

Start memory handling minor fsm (mem)fsnove to mem_handlel

Mem_handlel

Wait until memory handling is done, smmtovcomp_recog0 on assertion O
finished

Comp_recog0

Start component recognition minor fshogse_fsm), move to
comp_recogl

Comp_recogl

Wait until component recognition iselanove to text_recog0 on assertic
of finished

n

Text_recog0

Start text recognition minor fsm (tésin), move to text _recogl

Text recogl

Wait until text recognition is done,vado resultsO on assertion of finishe

d

ResultsO Two-stage writing of results RAM

Results1 Two-stage writing of results RAM

Results2 If finished all 64 grid blocks, move tast, otherwise, move to idle and
begin process again

Scanl Three-stage debugging states, cycle thrasgits RAM

Scan2 Three-stage debugging states

Scan3 Three-stage debugging states

Done Assert overall finished signal, indicate tlgtognition is complete. Rema

in done state for rest of operation.

The following state transition diagram summarizesdperation of the major FSM.

° Mem_handle0 »{ Comp_recog0 »{ Text_recog0 »{ resultsO) p{ scan0

A Mem_|

imem_finished”

Comp_finished Text_finished

| Iy

Text_recog1

Mem_finished

v v

handle1 - Comp_recogl
(

A 4 v
results1 scan1

v

: - : @—>

\comp_finished” text_finished

2.1.b. Memory Handling Minor FSM (text_fsm.v)

The memory handling minor FSM fills two 64x64 RAM#h the rows and columns
of the current grid block. The scanned image wagrally a 512x512 bitmap, which was
stored in a 64x4096 ROM. Thus, the first addrésh@ROM contains the first 64 pixels of

the first line, wh

ile the second address contdiesext 64 pixels of the first line — not the

next row of the first grid block. Thus, some addrag logic is required to read the rows of

the current grid block from the ROM, and then wtltese to the row RAM. The FSM then
assembles the columns of the grid block from thedfirow RAM. Here, we made the
tradeoff between area and speed; since we werketirby the space on the FPGA but had no
major time constraints, we chose to slowly assernitdecolumns using a single 64-bit shift
register and multiple passes through the row RANhen both RAMs are full, this FSM
asserts its finished signal. The following tabéscribes the states of this FSM.

State Description

Idle Stay in idle state until assertion of stagnsil

DelayO Delay to ensure correct output of rom

Write_row_ram| Write one row of grid block to ram, increment roant_add and move to
delayO

Delayl Delay to ensure correct output of row_ram

Load_reg Cycle through row_ram extracting a sifmfi¢hat corresponds to current
column. Store bit in shift register

Write_col_ram | Write filled shift register to colunnam, return to delayl if col ram not fyll

Done Assert finished, and return to idle

The state transition diagram for this FSM is lodatethe appendix.

2.1.c. Component Chooser Minor FSM (choose_fsm.v)

The component chooser minor FSM performs the innegegnition necessary to
determine the type of component in the current blegk. This minor FSM is itself
structured in a major/minor FSM design. Here,rittegor FSM (choose_fsm.v) determines
which edges are terminals of the component. Basdtis information, the major FSM starts
the appropriate minor FSM which handles that edgelination. For example, if the major
FSM determines that the component has terminateeteft and right edges of a grid block,
then the component is a horizontal two-terminainaet, and the major FSM starts the h2term
minor FSM. Specialized minor FSMs exist for horital two-terminal elements, vertical
two-terminal elements, one-terminal elements ieteisg the top edge, and three terminal
elements with edge combinations of {left, top, bot} or {right, top, bottom}. As more
components are added, minor FSMs can be modifiedaded. The following table describes
the states of this FSM. State transition diagrianghese minor FSMs are located in the
appendix. We use a decision tree methodologydorponent recognition, with the tree
shown below.

Original Image

li Edge Check ﬁ

Vertical 2-Terminal Components
Horizontal 2-Terminal Components
1-Terminal Components (Top Edge)
3-Terminal Components

Recognized Component

Uniquely Defined by Edge
Combination

Recognized Tests for Discontinuities,
Component Gaps, Thickness, “Bars”

We use a series of different tests for these compisn For example, a horizontal or vertical
two-terminal component can have a discontinuityp)ca gap (src), be thick (res), or be thin
(wire). A three-terminal component can either havr at the base of the transistor or no
bar at the base, signifying a t-connector. Finallgpne terminal component can be a ground
node, which has a discontinuity, or a power supphjich does not.

The following table describes the states of thiMFS

State Description

Idle Stay in idle state until assertion of staginsil

DelayO Delay to ensure correct output of row_raoh, @am

Id_edges_top_left0 Check row 3, col 3 for intersect

Delayl Delay to ensure correct output of row_raoh, @am

Ld_edges top_leftl| Check row 4, col 4 for intersect

Delay2 Delay to ensure correct output of row_raoh, @m

Ld edges bot_rightpCheck row 58, col 58 for intersection

Delay3 Delay to ensure correct output of row_raoh, @m

Ld edges bot_rightl Check row 59, col 59 for intersection

Analyze edges Based on edge combination, moveetmadjzed states

Unique states: Edge combinations that uniquely determine compotyget N1 is

N1, b1, r1, rbl, rt1, | blank grid block. Other state names indicate thgees that are

L1, Lbl, Lt1, Lrtbl, | crossed. Each state has a unique type code thdewiritten into the

Lrtl, Lrbl results RAM

T1, 12 Start the tlterm FSM to choose between negpbwer supply and
ground node

Tbh1l, th2 Start the v2term FSM to choose betweeticatresistor, capacitor,

source, or wire
Rtb1, rtb2 Start the rtb3 FSM to choose between WBNsistor and T-connector
Lrl, Lr2 Start the h2term FSM to choose betweelizbatal resistor, capacitor,
source, or wire
Ltb1, Ltb2 Start the Itb3 FSM to choose between NRINsistor and T-connectqr
Done Assert finished signal and return to idleestat

The following state transition summarizes the openzof this FSM.

Istart

From done

—————start

delay0 Ld_edges_top_left0 delay1 Ld_edges_top_left1
delay2 Ld_edges_bot_right0 delay3

_top— -

Ld_edges_bot_right1

~Other combos

Top, bottom N Leftrignt

Right, top, bottom : .
7 Left, top, bottom

v _
t1 tb1 rtb1 Itb1 Ir1
Unique components:

Blank, +PS,
TR, TL, BR, BL connector
h J 4 A A A LTR, LBR T-connector
4-way connector
t2 tb2 rtb2 Itb2 Ir2

2.1.d. Text Recognition Minor FSM (text_fsm.v)

The text recognition minor FSM performs the tedagnition necessary to determine
the value (including multiplier) of the componentthe current grid block. As mentioned
before, each letter or number is written into a8lBlock in the lower right of the grid block.
This FSM contains 10 boolean variables which shdwther the handwritten picture could
be a certain letter or number. For example, ifgixels in the box meet certain constraints,
then the FSM determines that the number mightdrgeaa two, etc. The sets of pixels (pads)
are chosen such that a reasonable representatiba ntimber will yield only one possible
choice. These pads are shown in the followinglgrapRed shows areas that the letter is not
allowed to touch. Green indicates areas thatdtterimust touch. Purple indicates areas that
the letter must not "cross.” For example, for thBre must not be a continuous vertical path
from the top-right to the middle-right. Light bliredicates areas that the letter must cross.

Numbers 1,2,3, Letters F, P, N
45,6 U, m K
7.8,9 M

Our text recognition requires that we are abl#ltthe val_reg with the exact set of
80 pixels corresponding to the handdrawn letteowéler, when scanning an image, a small
amount of rotation is inevitably added, such thatnged to find the location of this 10x8
block. To do this, we added some error correcttates which attempt to determine how
much the grid block has shifted during scanningisError correction is able to correct 1-
pixel shifts. Also, our pads have a certain amatfii¢niency such that most of them can
handle shifts of one pixel. This table shows tifieient states of the text recognition FSM.

State Description
Idle Stay in idle state until assertion of stagnsil
DelayO Delay to ensure correct ram output

Find_right edgeQ Try to determine right alignment

Delayl Delay to ensure correct ram output

State

Description

Find_right edgel

Try to determine right aligment

Find_bot_edge0

Try to determine bottom alignment

Delay2

Delay to ensure correct ram output

Find_bot edgel

Try to determine bottom alignment

Delay3 Delay to ensure correct ram output

Fill_val reg Begin filling shift register holdinghe 10x8 block — number
Delay4 Delay to ensure correct ram output

Analyze val Analyze filled val_reg (ie complete 8dxock) — number
Delay5 Delay to ensure correct ram output

Fill_val reg_mult

Fill shift register with 10x8 block — multiplierdtter)

Delay6

Delay to ensure correct ram output

Analyze mult

Analyze filled val_reg — letter

Done

Assert finished signal and return to idleestat

The following state transition diagram summarizesdperation of this FSM.

Ve
@/
I

done

&®3coly——

Find_right_edge0 - Find_right_edge1 — \

&(63" row) delay2

| I Find_bot_edge0 |4
~&(63" col))
delay0 . delay1 e
/
— ~&(63" row)
y

L

Y

Find_bot_edge1

delay3

0

Fill_val_reg

delay4

&

- Analyze_val

—— delay6 Delay5
/

r

— Analyze_mult Fill_val_reg_mult —

2.2. Analysis and Video Output

After image and text recognition is complete, $histem can analyze the circuit to
discover and label its nodes. Analysis module explores the circuit using a Depth-First
Search with enqueued list. stack supports the analysis by providing a First-In L@st

(FILO) structure to serve as working memory for slearch. After the search completes, the
system displays the results of recognition andyaisblsing a standard VGA monitor.

The video output of the system is an 800x600,t tdior display. The entire screen
contents are held in a dual-port RAM module onRR&A. The video subsystem is divided
into two classes of modules: those that read fleenwvtdeo RAM, and those that write to the
video RAM. Because the video RAM uses a dual-paritecture, the read & write sections
operate independently of each other.

The read section runs continuously during systparation, driving the display with
the video RAM contents and the appropriate corsigials. Thesync generator is
responsible for keeping track of the current plrehtion and asserting the sync signals
during the blanking periods. Tldesplay manager takes the current pixel location and sends
the corresponding video RAM value to the monitor.

The write section consists of three modules talleathe three different video output
modes. Theaw circuit display module reads from the ROM containing the userd@sed
circuit image and writes it directly to video RANEnNtering the 512x512 image on the screen.
Theideal circuit display module takes the recognized circuit data storétderresults RAM,
activates the analysis module to assign nodesthemdredraws the circuit with predefined
sprites stored in ROM, annotating each componetiit g value and node information. The
spice display module also uses the analysis module to assigaspdloen combines that data
with the information in the results RAM to generatprimitive SPICE netlist describing the
circuit. AMajor FSM delegates memory control and display module amtinaccording to
the state of the input switches set by the useblogk diagram for the analysis modules and
video subsystem is given on page 74 of the appendix

2.2.a. Analysis

The analysis module has the task of finding aflesoin the circuit and assigning each
node a unique label. The one constraint on ndakddas that ground nodes must have the “0”
tag; all other node identifiers can be arbitrargretater strings. The analysis module uses a
simple counter as a source of labels. The cowtdets at 1 (because O is reserved for ground
nodes), and increments whenever a new node isvaise.

Because the circuit is contained within a gridisture, with exactly one component or
wire junction per grid location, the set of possibbde locations is easily defined as every
interior row and column boundary. Thede value RAM has 112 slots, one for every
possible node in an 8x8 grid. When the analysidutebegins processing, it initializes every
slot to 113, which is a special reserved valuaifaassigned nodes.

After the node value RAM is initialized, the ansilymodule begins the task of finding
and labeling nodes. A Depth-First search is guasghto completely explore the circuit, as
any valid circuit must be a connected graph. Tapssfor the Depth-First search algorithm
are:

1. (Initialization) Perform a linear scan of the gratiopping when an occupied grid block
is found. Push this grid location onto the stack.

2. Pop the most recently added grid location off @f $kack, and follow the heuristics for
node assignment for all row and column boundariés wire edges.

3. Push all adjacent, connected grid locations threnhat already in the enqueued list
onto the stack. Loop back to step 2. Stop wherstack is empty.

The enqueued list ensures that the search worgt antinfinite loop. A 64-bit register

models the enqueued list. Each bit representgldagation (bit n represents the grid location
in row n div 8, column n mod 8), with a value omkaning the location has been queued and
0 meaning that it has not been queued. The stackila described in the next section
provides the FILO memory abstraction.

For node assignment, the basic strategy is taleioccupied grid locations into two
categories: wire junctions and components. Winegions must have the same node value at
all wire edges. If there are conflicting existigsignments, the system gives precedence to
the lowest value, reassigns all wire edges tovhlise, and rescans the table to propagate that
reassignment. The lowest value is chosen so thahd nodes are never reassigned. If there
are no conflicts, then the system just assignsdinee value to all edges, generating a new
value if all edges were previously unassigned.ofpgonents usually, but not always, has
different node values at its wire edges. The systspects any existing assignments, and
generates new values for unassigned edges. Grmgas are the only exception to this rule,
as they automatically take the “0” value for theenedge, and if there was an existing
assignment, that change is propagated througheutdtie value RAM. A complete
flowchart for the node assignment process is gorepage 77 of the appendix. Once node
assignment terminates, the analysis module astefisished signal.

2.2.b. Stack

A stack is a memory element that follows a First-Ast-Out (FILO) policy. The
stack supports two operations: push and pop. A puges a new value to memory. A pop
removes the most recently added value from memuayr@turns that value. The stack in this
system exists to support the Depth-First searabriihgm used by the analysis module.

The stack uses a 7x64 RAM on the FPGA as the indtger for its abstraction. On
initialization, the stack module writes a speci@r8Of-Stack symbol to address 0 of the
RAM and waits for commands. Modules using thekstse a 2-bit command input to send
instructions, and a bi-directional 7-bit bus todand receive data. The stack module only
drives the bus while performing a pop operatioroni@cting modules should tristate the bus
by default, only driving the bus during push opiers.

To push data, a module sets the command inpuait@?laces the data on the bus,
then waits three clock cycles. The stack modulkl EBecks the command input on every
positive clock edge and moves to the first pustestdoen it sees that command code. The
stack RAM address is incremented during that fitsth state. The stack asserts the write
enable signal for the RAM on the next clock cyeled uses the last of the three clock cycles
to hold the data after the write.

A module sets the command input to 3 in orderdjp g@ata off of the stack. Because
the stack RAM address already points to the masimtty added item, the stack module only
needs to start driving the bus with the RAM outjairl the data is available on the next clock
cycle. The data remains available for an additiclark cycle while the stack decrements the
RAM address. If the most recent value was thet-8&Stack symbol, the stack does not
decrement the RAM address. The stack does nottoeslete popped values from the
RAM, as the address increments only before writiegy data, and the address does not
decrement past the Start-Of-Stack slot.

2.2.c. Video Read - Sync Generator

VGA output consists of two periods: an active oagiwhen the monitor is receiving
user-visible pixel information, and a blanking i@gi when the monitor is in the middle of
moving to the next line or frame. Each blankingioe is divided into a front porch, sync
pulse, and back porch. During the front and bawkip the color channels are set to output
only black pixels. The green channel is set tosiree level during the sync pulse. The sync
generator controls the horizontal sync, verticalcsyand blank signals to manage the blanking
region portion of VGA output. This module alsomuis two counters that define the
system’s conception of the current pixel location.

For an 800x600 display running at a 72-Hz refredé, the sync generator needs to
follow the standard VGA timing specifications lidtan Table 1.

. Horizontal (in Pixels) Vertical (in Lines)
Pixel Clock
Format . .
(MHz) Active | Front | Sync | Back |Active | Front | Sync | Back
Video | Porch | Pulse | Porch | Video | Porch | Pulse | Porch
800x600, 72Hz | 50.000 800 56 120 64 600 37 6 23

Table 1: 800x600, 72-Hz timing specifications. Reproduced from lab kit website at http://www-
mtl.mit.edu/Cour ses/6.111/Iabkit/vga.shtml.

Generation of the pixel clock is handled by a seripigital Clock Manager (DCM). All
modules in the video subsystem run at the pixalkcfor simplicity. The sync generator uses
an FSM to control whether the current display misdeorizontal active video, front porch,
sync pulse, or back porch. An additional 2-bielimode register controls whether the current
vertical region is active video, front porch, syndse, or back porch. The vertical line
counter is incremented every time the FSM entextirizontal active video state, and the
line-mode register changes when the counter redabkdsnit for that mode.

2.2.d. Video Read - Display Manager

The display manager continuously reads from tdewiRAM, with the address based
on the current pixel location data provided bygkiec generator. This module also takes the
hsync, vsync, and blank signals, generates a newasite sync signal, and sends all sync
and pixel data to the monitor and the ADV7125 vi@exC.

Each location in the 8x60000 video RAM is an 8gpighunk of a row. Therefore,
given an 800x600 resolution at 1-bit color, ther E00 locations per row. The display
manager sets the read address to ((current colun@) & (current row * 100)) by continuous
assignment. The RAM has a 1-cycle read delayhesixel data sent to the DAC is actually
the bit corresponding to (current column — 1). dther VGA signals are delayed by 1 clock
cycle to compensate for the RAM. The video DAC aa&scycle pipeline delay, so the hsync
and vsync signals are delayed another 2 clock syakethey are sent directly to the monitor.

The composite sync signal is simply the XNOR ofrftsand vsync. This sync signal
passes through the video DAC, so it is delayed onbyclock cycle. The DAC expects pixel
data in 24-bit color form, so the display managepsy ties each 8-bit color channel to OxFF
if the current pixel is white, and O if the currgmtel is black.

2.2.e. Video Write - Raw Circuit Display

Raw circuit display simply sends the contentshefROM holding the user-supplied
hand-drawn circuit bitmap to the video RAM, centkom the 800x600 screen. The word size
for the ROM is 64-bits, while the video RAM usebi8words, so the raw circuit display
module performs 8 write operations to video RAMéwery read from the circuit ROM. The
size of the circuit bitmap is always 512x512, sefodule only needs to add horizontal and
vertical offset constants to the video RAM addiiessrder to center the bitmap.

An FSM controls the flow of operations in the rawcuit display module. When this
module is activated, the FSM writes OxFF to evepation in video RAM in order to clear
the display. The FSM then starts at the firsttiocaof circuit ROM, which corresponds to
the upper left-hand corner of the bitmap, and wr&e-bit chunks of the ROM data
sequentially to the video RAM. Each write takegéhcycles: the address and data are set
during the first cycle; the RAM write enable sigmabsserted during the second cycle; and
the address and data are held during the thirc&e@fter the write enable signal is lowered. A
simple 3-bit counter keeps track of which 8-bit ckwf ROM data to write to the video
RAM.

After all circuit data has been written to videAMR, the module enters a termination
state, and remains there until the user choodeste raw circuit display mode. The FSM
moves to the idle state and awaits the next aativat

2.2.f. Video Write - Ideal Circuit Display

The ideal circuit display module has three diffgérgpes of data to write to the
display: sprites for the components and wire jurdj based on the recognized data in the
results RAM; sprites for the characters represgrttie values for components, also based on
the results RAM data; and sprites for the charaatpresenting the node assignments, based
on the node value RAM. The module writes all thtsgees of data to the video RAM
sequentially for each grid location.

The module’s FSM moves from the idle state toratnalization state when it receives
an activation signal. The FSM clears the video Rédvitents during initialization, writing
OXFF to every location, and then sets the resulsIRddress to 0. For every grid location,
the ideal circuit display module reads the datanftbe results RAM, reads the appropriate
component/wire junction sprite from the compone@iRand writes it to video RAM, reads
the character sprites for the component value ttorcharacter ROM and writes them to
video RAM, and finally reads data for the four ndoleations from the node value RAM and
writes the corresponding character sprites to vRAM. The sequence terminates when all
64 locations in the results RAM have been processed

The sprites in the component ROM are 64x64, sodia circuit is 512x512, the
same as the raw circuit. The circuit is centemredhe display by adding constant vertical and
horizontal offsets to the video RAM address. Th® 8haracter sprites for the component
values are written in the lower right-hand corneeach grid block, with the numeric value
starting at a relative location of (40,48), and indtiplier value below it at (56, 56). Node
annotations are only written for components, ineottd avoid unnecessary visual clutter.
Each component has at most four possible nodedmsaat its top, left, right, and bottom
edges. The relative locations for these edgef4reB), (-16, 32), (48, 32), and (24, 56).
Note that the negative offsets for the top andriefte locations means that they will

overwrite the bottom and right node locations fa top and left adjacent grid blocks. This
strategy lets the system simply avoid repetitivdenannotations when two components are
adjacent.

After all 64 grid locations are processed, the HBbps in a termination state, until
the activation signal for the module is lowereche FSM then returns to the idle state until
the activation signal is raised again. A simptif&ate transition diagram is given on page 76
of the appendix.

2.2.g. Video Write - Spice display

Spice display writes a basic SPICE netlist tovideo RAM. For every component in
the circuit, the SPICE description requires a ueaitgbel, identifiers for the nodes at its
terminals, a type string (only for certain compaisgrand a component value. All
information is represented on the display usingctimracter ROM sprites.

The spice display FSM follows the same basic medew as the ideal circuit display
FSM. The FSM reads the results RAM for a grid tmeaand, if it holds a component, it
generates a label by concatenating the one-laitaponent code with a counter value
specific to that component. Next, the FSM reaésiibde value RAM locations
corresponding to that component’s terminals, antes/ithe three terminal values, separated
by spaces. For two-terminal devices, the thirthteal is replaced by whitespace. Voltage
sources and transistors are the only two compotieatdill the type field. The current circuit
recognition routines do not support specificatibecamponent types, so these values are
hardcoded to “DC” for voltage sources and “NPN” fi@nsistors. All other components fill
this field with whitespace. The FSM writes the gament value and multiplier code found in
the results RAM value, and then finally writes ardeof-Line symbol.

All SPICE information is written first to a spi€®AM before the appropriate character
sprites are written to video RAM. The spice digptaodule takes this approach to support
the serial export module, which reads the spice R exports an ASCII text file
containing the SPICE data to a PC over a null-mosenal cable. When the spice display
module is done writing to the spice RAM, it writ@s End-of-File symbol, so that the serial
export module knows where to end transmissionerAfhishing with writing to the spice
RAM, the spice display module first clears the wd®AM, then starts reading the character
codes from the RAM and writing the correspondingrelster sprites from the character
ROM. Because all null fields are filled with whsggace, the lines are neatly formatted with
each field lining up vertically, and the width afah line is known to be 21 characters. The
output is centered horizontally on the monitor bgiag a horizontal offset constant to the
video RAM address. As with the other display meduthe spice display module enters a
termination state when video output completes,ilogpthere until the module is deactivated.
The FSM then returns to the idle state until the metivation. A simplified state transition
diagram is given on page 75 of the appendix.

3. Design Decisions

The image and text recognition was implementedgusimple and intuitive logic
techniques rather than sophisticated signal proags#®\s mentioned before, a decision tree
was used for component recognition, as we lookeddticeable features of different

components. Text recognition also used a decisem) where the noticeable features were
different sets of pixels on the 10x8 letter arekere, we made a trade-off between scalability
and feasibility. For our limited component libratlge heuristic based decision tree was
extremely accurate for component recognition. \Wgmally tested recognition using a 2-D
correlation in Matlab, and found that additionalifiistics would be needed for accuracy; after
testing our heuristics, we determined that the @&Belation was unnecessary. Another
trade-off was one of size versus amount of inforomat Our images were saved as
monochromatic bitmaps (ie 1-bit color). This sehetimited the accuracy of some of the
image recognition algorithms. For example, if veel lused a 2-D correlation, a black grid
block would correlate well with every componentls@ we used a rather low resolution for
our images, again limiting our ability to effectiyaise image recognition algorithms.

Finally, as mentioned before, we faced a spacet@nstin the capacity of our FPGA, but no
time constraints. As a result, we chose to implarmaeslower algorithm rather than use large
registers and memories, as shown in the memorylingrieSM.

The analysis module uses the Depth-First seagdritim for efficiency in exploring
the circuit. A linear scan of the results RAM waballso return correct results, but spends a
lot of time unnecessarily searching unoccupied lgredtions for sparsely populated grids.
For an 8x8 grid, the effect on system speed isigibtg, but the improvement grows rapidly
as grid sizes increase. The enqueued list is radded a 64-bit register, instead of using a
RAM, because the small amount of information thetesy needs to store is judged to be not
worth the complexity of a RAM interface. On thé@t hand, the stack is implemented as a
stand-alone module instead of a simple 64-slicaydrecause a stack is a useful abstraction to
have, even if it is only currently used by one medtAlso, although the addition of a stack
module increases the total amount of complexityhesystem, it reduces the complexity of
the analysis module, and makes the Depth-Firstsestate flow more natural and
comprehensible.

The 800x600 resolution for the video display walesed because the system needed
to display the 512x512 circuit bitmap. 800x600 waes smallest standard VGA resolution
that could fit a 512x512 bitmap. An alternativeie would be to scale the bitmap down,
but it is desirable to keep the reference bitmapaeen as faithful to the original as possible.
1-bit color was chosen for two reasons: there wasntch need for more than two colors, as
the recognition routines only operate on blackahde values, and the FPGA would not be
able to support the RAM size if the color depthr@ased much further. The use of more
color would have allowed the system to presernegsits in a more engaging manner,
perhaps by color coding components, but this benefs judged to be not worth the added
complexity of moving the video RAM to the exter@@®T SRAMS.

4. Testing

Testing was first carried out using a behavioiralgation in ModelSim. As seen
above, Ravi added 3 states at the end of his i&§bt that simply cycled through the results
RAM so he could observe the accuracy of the recdimgni Multiple real circuits were
prepared and scanned. In addition, circuits weepgred that simply filled the 8x8 grid,
without regard to connections. Finally, a ciroués prepared with all the numbers and letters
written multiple times, to test the text recogmtioThe component recognition was 100%
accurate when the user followed the specified ddedrawing. Text recognition was

slightly more difficult, but we still reached 95%aracy, with the "eight" being the most
difficult number to correctly characterize. Théldwing simulation shows a typical test
attempt. The various codes for components andphalts are shown in the appendix.

Because Vijay finished the video portion of thejpcb before Ravi finished the image
recognition, we were able to test the image redagnon the video output as well. The only
problem with this was the extremely long wait togete a programming file.

The stack was implemented and fully tested befank on the analysis module
began, because subtle errors in the stack funditipieauld have been hard to detect within
the context of the Depth-First search. ModelSimaweoral analysis combined with manual
forcing of relevant parameters was used first tifywéhat high-level state flow and signal
assertions proceeded as designed. Next, post-flemate simulation, combined with a
simple testbench, ensured that the timing confagiushes and pops worked within the
specific timing specifications of the FPGA.

Once the stack was satisfactorily tested, theyarsaimodule was implemented and
subjected to a similar series of tests. The re®RM was pre-populated with a test circuit,
and then the waveforms in behavioral analysis Vigwarified that the first few steps worked
as expected. The process takes too long to coehplaspect step-by-step, so the “mem
display” ModelSim command was used after the aimaly®dule terminated to dump the
contents of the node value RAM, and the values wenepared against hand-calculated
assignments. A few different sample circuits wade® tested to guard against corner cases,
and then finally the tests were repeated undergase & route simulation to ensure that
there were no timing violations.

The video display modules were much easier to &ssiheir output was directly
verifiable on the monitor. Basic video output veasy to implement, as the sync generator
was mostly completed from a previous laboratorygassent. Prepopulating the video RAM
with images ensured that the display manager wotkeakctly. Raw circuit functionality
was straightforward and showed that the dual-pdegosrRAM architecture worked. Ideal
circuit and spice display were both tested by ppeetting the results and spice RAMs with
sample data and visually verifying that the scre@ments matched expectations. In the few
instances where the reason for failure was not idiately apparent from the screen output,
the logic analyzer was used to examine the statablea and RAM address & data values.

5. Conclusion

Our project demonstrates the ability to:
» Perform image and text recognition on a scanneddptin the domain of an electrical
circuit

* Analyze the circuit to discover and label elecirivades
» Output the results of recognition and analysisathlgraphical and textual form

Our project uses no ICs or connections to extataaices (besides the serial cable for
exporting data), showing that it is possible to lenpent a complex and interesting digital
system entirely within an FPGA. Our design makesviy use of RAMs and ROMs for data
storage and sharing, and FSMs for coordinatiomatgss flow. The logic for recognition
and analysis is extensive, and implementation wasageable only because significant time
was spent designing flowcharts and state transttiagrams beforehand. The logic analyzer
was invaluable in debugging, because many sulnti@diissues did not manifest themselves
in behavioral simulation, and post-synthesis sitmmaproved to be just as slow as compiling
the project and outputting from the labkit to thgit analyzer.

