
3D Wireless Mouse
Our project is a wireless, 3-dimensional, handheld computer mouse. The user will be able to
control the computer cursor by rotating his/her hand in a joystick fashion. It will be implemented
using a 3-axis accelerometer for sensor input, a RF radio kit for wireless capability, and the Labkit.
The Labkit will be connected to the computer using a PS/2 interface.

Shirley Li, Matthew Tanwanteng, and Joseph Cheng
TA: Charlie Kehoe

6.111 Introductory Digitial Systems Laboratory
12 May 2005

1. Introduction

The 3D Wireless Mouse takes in the user’s hand acceleration as input and moves the mouse on a
normal personal computer appropriately. The initial goal of the project was to calculate the exact
position of the hand to determine the movement of the mouse on the computer screen. However,
that goal required more hardware parts, more money, and more time than we can afford. The final
project analyzes the tilt of the user’s hand and moves the computer mouse accordingly.

The user puts on the 3D Wireless Mouse glove on the right hand, and plugs the device into the
PS/2 port of any personal computer. The reset button is then pushed to initialize the entire system.
On tilting the glove left and right, the mouse on the computer screen moves left and right. On
tilting the glove forward and backwards, the mouse on the computer screen moves up and down.
The user can use additional push buttons to left and right click.

The system can be broken up into three main sections: sending data wirelessly from the
accelerometer to the FPGA, filtering and calculations in the FPGA, and then the PS/2 interface to
communicate with a computer. Figure 1 shows a rough block diagram of the system. The user
interacts the system by moving the accelerometer around in the air. At any moment in time, the
user can also re-initialize the system.

Figure 1: General Block Diagram.

2. Description and Implementation

2.1 Wireless Segment

The wireless segment includes the accelerometer chip and the CC1010 RF radio. The
accelerometer is the only sensor input to the system. It is used to determine the position of the
hand. An RF radio transceiver wirelessly transmits the accelerometer data to a base station that is
connected to the Labkit via an UART (Universal Asynchronous Receiver/Transmitter) cable.
Thus, the output of the wireless segment to the Labkit is serial asynchronous acceleration data. The
accelerometer and transceiver are powered by 3V lithium batteries.

2.1.1. Accelerometer

The accelerometer being used is the LIS30L02 3-axis model from ST Microelectronics. It has a 2g
range and analog voltage outputs for each axis that are radiometric to Vdd. The x and y-axes have
maximum bandwidths of 4 KHz. The z-axis has a maximum bandwidth of 2.5 KHz. The

2

accelerometer is mounted on the inside of a glove such that when worn, the chip lies flat on top of
the hand, with the z-axis parallel to the gravity vector.

2.1.2. CC1010 RF Radio Hardware

The Chipcon CC1010 RF radio is used to implement the wireless capability. The radio kit has two
identical transceivers and an evaluation board. Each transceiver is capable of transmitting and
receiving data, but for the purpose of this project, one transceiver functions solely as a transmitter
and one solely as a receiver. The evaluation board is essentially a docking station for the receiver.
It provides power to the receiver and contains several LED’s that are useful for debugging, as well
as an array of I/O pins, potentiometers, and the UART port that will be used to interface with the
Labkit.

There is a 10-bit ADC and a microcontroller on board each transceiver. The microcontrollers are
programmed in C and control the operations of the transceivers. Each ADC has three input ports
from which data can be taken and digitalized. The transmitter ADC input ports are connected
directly to the accelerometer outputs. The receiver ADC is not used.

2.1.3. Transmitter Algorithm

The functionality of the transmitter is to continuously sample the accelerometer and send the digital
data to the receiver base station. During each cycle of operation, each ADC input port is activated
and a conversion occurs. Only the top eight bits are taken. Thus, each accelerometer axis gives
one byte of data. After all three inputs are sampled, the three bytes of data are transmitted together
as one packet. The transmitter executes this procedure in an infinite loop.

The ADC is operated in single-conversion mode, which means conversions are manually initiated,
rather than automatically initiated by a timer. The three inputs are sampled right after each other.
The output of the ADC is unipolar, ranging from 0 to 1023, with 1023 corresponding to Vdd.
However, since it is easier to transmit in bytes, only the 8 MSB are saved.

In each cycle of operation, after all three inputs are digitalized, a 3-byte long packet is transmitted
at 2.4 kBaud using the Manchester encoding scheme. Manchester encoding works in the following
way: a '1' is represented by a high frequency f1 followed by a low frequency f0 and a '0' is
represented by a low frequency f0 followed by a high frequency f1. The DC component of the
transmitted signal is therefore 0, which is desirable with regard to energy conservation. For these
transceivers, f0 and f1 are centered around 868 MHz and separated by 64 KHz. Also, since there is
one transition per encoded bit, a clock is effectively sent along with the data. Thus, Manchester
encoding is a synchronous protocol and allows for easy resynchronization of the data at the
receiver.

Every time a packet is sent, a preamble and a sync byte are appended to the front of the data. The
preamble alerts the receiver that there is incoming data, and consists of 7 bytes of alternating 0's
and 1's. The sync byte is used to signal the beginning of the data sequence and is set to be
10100101. Figure 2.1.3 explains Manchester encoding and also the structure of the preamble.

3

Figure 2.1.3: Manchester encoding.

2.1.4. Receiver Algorithm

The receiver continuously listens for the repeating 0-1 preamble pattern that indicates incoming
data. When it successfully receives at least 7 alternating 0's and 1's, it will start to look for the sync
byte. If the sync byte is received, then the data is read in, stored, and sent to the UART port. If the
sync byte is not received after a deviation from the 0-1 pattern, then the receiver goes back to
preamble detection mode.

The received data is sent to the Labkit via a UART cable. UART, or Universal Asynchronous
Receiver/Transmitter, is an asynchronous serial protocol. This means that data is transmitted
serially through it without a clock signal. Thus, the data rate must be predetermined and the
receiving end of the UART must know what it is. The data rate for this project was set to 115
kBaud. When there is no data being transmitted, the data line remains in a high idle state. Data is
sent in bytes, and each byte is preceded by a start bit and followed by a stop bit. An optional parity
bit is sometimes sent for error detection, but was not used in this project. The start and stop bits are
active low. Figure 2.1.4 shows an example waveform of the output of the UART when one byte of
data is sent.

Figure 2.1.4: UART output

To read in the serial data, the data line needs to be continuously sampled so that the start bit is
detected. Once the start bit is detected, the data line is sampled at the baud rate (115,200 bits/sec)
to extract the data bits. After 8 samples are taken, the interface then checks for the stop bit. If the
stop bit is detected, then the data is saved. If the stop bit is not detected, then the byte of data is
discarded.

2.2. FPGA Serial Interface (by Joseph Cheng)

The FPGA interfacing allows the Labkit to communicate with the CC1010. The CC1010 connects
to the Labkit through a UART port. The FPGA uses a bunch of registers controlled by a finite state

4

Idle

Start
bit

8 data bits

Stop
bit

Idle

machine to take the serial data and convert it into parallel data. The finite state machine reads in the
data from the UART, and it loads the data appropriately into a bunch of registers. Then, it extracts
the 8-bit binary offset data point. The data read is then converted to twos complement.

Part of the UART interface is a set of registers that latch the acceleration data from each axis. The
data of the three-axis comes in through the same UART port serially, so the registers store the
different acceleration data appropriately. When the user first resets the system, the first set of three
acceleration data points is registered. This registered value is used as a reference point for other
acceleration data. Whenever a new value is read in, it is added to the negative value of the
reference point.

dots
(alphanumberic

display)

switch

LED

reset_sync
(global)

clock_27mhz
(global)

reset_init init_out

vel

acc

acc_init

pos

load_pos

Major FSM

r/w_bar
cs_bar
status

load_vel

data_ready_si data_ready_ad

data_ready

load_init
load_reg

load

rs232_rxd
(from wireless kit)

acc_si

load

acc_ad

acc

acc_out

Serial Interface

1 0

FSM Serial FSM AD

AD670

Acceleration
Register

1 0

Double Integrator

8
8

8

8

Display State

8

switch[0]

switch[0]

acc_init

16 24

vel pos
Synchronizer

Init
Register

reset

PS/2 Interface

8

8

16

24

8

640

ps2_clock ps2_data

Figure 2.2: Detailed Block Diagram of Serial Interface and Calculations.

The diagram in Figure 2.2. shows the different portions of the Serial Interface and the calculations.
The debugging modules were also included to fully show how the user can interact with the
system. Note that in this diagram only one axis is being considered for the acceleration data,
velocity data calculations, and etc. For the other axis, the same modules are integrated with the
same FSMs.

2.2.1. Synchronizer

The Synchronizer module takes in the 27 MHz clock signal and a user inputted reset signal. The
module then outputs a synchronized, glitch-free reset_sync signal. The purpose of this module
is to make sure that the user inputted reset signal is glitch-free and synchronized to the clock
edge to avoid problems. Without this module, any sort of glitch will make the system behave
unpredictably. The Synchronizer module is implemented with two registers in series. Therefore, it

5

takes two clock signals before the actual reset signal from the user is outputted as the
reset_sync. This reset_sync will be all other modules in the system.

2.2.2. Serial Interface

The Serial Interface takes in a serial line and converts the data into parallel data. This module takes
in the 27 MHz clock signal, a load signal, and a data rxd signal. The serial rxd signal comes
from the Universal Asynchronous Receiver/Transmitter (UART). Since the wireless kit is sending
three packets, the Serial Interface module converts the serial signal into a set of three 8-bits data
points: acc_x, acc_y, and acc_z.

The Serial Interface module is implemented with a set of 24 registers. Every time a valid data point
comes in, a high load signal registers the new data and keeps the old data in the next register. The
24 registers allow the module to register 24 bits. In this way, 3 bytes of 8 bits can be extracted from
the serial line. Note that the loading of the signal is synchronized to a positive clock edge.

2.2.3. FSM Serial

A finite state machine (FSM) controls the Serial Interface module, so that the appropriate data
points are registered into the system. This module takes in the 27 MHz clock, the reset_sync
from the Synchronizer, and the rxd signal from the UART. The module then outputs a
load_data signal to load the appropriate data into the Serial Interface and a data_ready
signal to let the system know that the Serial Interface has valid data. The rxd signal is registered to
prevent glitching. See Figure 2.2.3 for a FSM diagram.

The data comes in through the rxd signal, and 3 bytes are read. Each bit begins with a low start bit
and stops with a high end bit. The start and stop bits let the reader know when to start reading the
data and when to stop reading the data. The reader also knows if it is reading a valid byte by
looking for a low start bit, 8 bits of data, and then a high stop bit. If these specifications are not
met, the data is trashed. Note that 3 bytes are sent in one packet. The data is coming in at 115200
bits per second (bps), so it takes about 234 clock cycles for one bit to come in.

Upon reset, the FSM starts at the WAIT_START state. At this state, the FSM waits for a low stop
bit coming in through the rxd signal. The FSM resets the bytes counter to 0, and during the next
states, the FSM will increment this counter for every byte read.

On a low start bit, the FSM transitions to the START state. A baud rate counter is started. When
the counter counts 117 clock cycles, the FSM checks to make sure that the rxd signal is still a
valid low start bit. If it’s invalid, the FSM transitions back to the WAIT_START state. Otherwise,
the FSM keeps incrementing the baud rate counter. When the baud rate counter counts up to 234
clock cycles, the FSM transitions to the next state, READ_DATA. The FSM also starts a bits
counter to count the number of bits being read.

At the READ_DATA state, the FSM restarts the baud rate counter. When the baud rate counter is
at 117, the FSM sends out a high load_data signal to the Serial Interface to load in the valid
data bit. When the baud rate counter is at 234, the FSM transitions to the next state. If the bit

6

counter is at 8, the next state is the STOP state. If the bit counter is smaller than 8, then the FSM
will restart the READ_DATA state and read the next bit.

At the STOP state, the baud rate counter is restarted. When this counter is at 117 clock cycles, then
the FSM checks to make sure that the rxd signal is a valid high stop bit. If it is not, the FSM
transitions back to the WAIT_START state. When the baud rate counter is at 234 clock cycles, the
FSM checks the bytes counter. If the bytes counter counts less than 3 bytes, then the FSM goes
back to the START state to read the next byte. If the counter counts the current word as the third
byte, then the FSM transitions to the WAIT_START state, and waits for the next packet of data.

reset

counter != RATE/2
&& counter != RATE

| counter = counter + 1

counter == RATE &&
data_counter == 7 |

counter = 0

counter != RATE/2
&& counter != RATE

| counter = counter + 1

counter == RATE &&
data_counter[4:3] != 2'b11 |

counter = 0

counter == RATE/2
&& rxd

| load = 0

counter == RATE
&& rxd

| load = 0

rxd

!rxd | counter = 0,
data_counter = 0

counter == RATE/2 && rxd

counter == RATE

counter == RATE/2 | load = 1,
data_counter = data_counter + 1

counter == RATE && data_counter != 7 |
counter = 0

counter != RATE &&
counter != RATE/2 |

counter = counter + 1

WAIT
START

START

READ
DATA

STOP

Figure 2.2.3: FSM Serial Module State Diagram.

2.3. FPGA Calculations

Originally, we were planning on calculating the absolute position of the mouse. However, upon
many test on the accelerometer there are major problems with calculating the absolute position.
These problems will be discussed more in depth late in section 3. The theory and implementation of
calculating absolute position will be discussed here.

The data coming in from the wireless kit is acceleration. What is needed to move the mouse around
is the relative position. This is done through integrating the acceleration twice. The first integration
outputs velocity; the second integration outputs the position. To implement the integration function,
an accumulator was used to add up all the different samples. To just get the change in position from

7

the last sample, the accumulator can be reset to 0, so that only the change in position can be
calculated.

After each integration step, the number of bits increases. Since acceleration is not that high, I
assumed the velocity to be 15 bits and the position to be 20 bits. The number of bits can be
modified later if the number of bits is creating issues with calculations.

2.3.1. Initial Register

The Initial Register module takes in the reset_sync signal, the 27 MHz clock signal, and an
init_reset signal. The module outputs an init_out signal. The Initial Register module
registers the reset_sync signal. When a high reset_sync signal is registered, the system can
perform its many steps of initializing before resetting the reset_sync signal back to a low with
an active low init_reset signal. The Initial Register essentially behaves like a walk request
register, where the walk request is the same as a high reset_sync signal.

2.3.2. Acceleration Register

The Acceleration Register module takes in a 27 MHz clock signal, a load signal, a load_reg
signal, load_init signal, and an 8-bit acc_in signal. The module then outputs an 8-bit
acc_init and an 8-bit acc_out. See Figure 2.3.2 for more detail on the module.

On each high load signal, the module latches the current 8-bit acc_in signal. The load signal
comes from the data_ready signal of the Serial FSM. This allows the valid data to be latched
into the system.

The Acceleration Register module registers up to the past four data points, so that it can calculate
the current average as an 8-bit acc_reg data. This calculation smooth out the data points to filter
out some of the noise.

On a high load_init signal, the Acceleration Register latches the current acc_reg. The
module then converts the data to be in twos complement. Afterwards, the twos complement data is
converted the negative version of the data and outputted as an 8-bit acc_init. This data point is
used as a reference point to do all other calculations. This data point is considered to be the
equilibrium data point. Therefore, when this negative data point is added to the newer data points,
the output is adjusted according to this reference. The adjusted output is the 8-bit acc_out
signal.

Note that for the final tilt mouse, the acc_out signal is directly sent to the PS/2 interface.

8

load

acc

acc_init

acc_out

load_regload_init

+

>> 2 offset to twos

complement

conversion

+
Acceleration Register

8 8 8 8

8

8

8
8

88

10

Figure 2.3.2: Acceleration Register Block Diagram.

2.3.3. Double Integrator

The Double Integrator module takes in the 27 MHz clock signal, an 8-bit acc data point, an
active low reset_vel signal, a load_vel signal, an active low reset_pos signal, and a
load_pos signal. An 8-bit vel and 8-bit pos is outputted from the module.

The purpose of this module is to take in the 8-bit acc data point representing acceleration,
integrate to get the 8-bit vel data point representing velocity, and integrate again to get the 8-bit
pos data point representing position.

To implement the integration addition accumulators are used. A low reset_vel signal resets the
velocity accumulator to 0. A high load_vel signal registers the 8-bit acc data point and adds it
to the current vel. The same implementation is used to integrate from velocity to position, except
a low reset_pos signal resets the position accumulator to 0 and a high load_pos signal
registers the current vel data.

Figure 2.3.2 shows how the registers and accumulators are placed together to create the Double
Integrator module.

9

load_vel load_posreset_vel reset_pos

vel

pos

acc_out

+
8

16 16 +
16

24 24

Double Integrator

Figure 2.3.2: Double Integrator Block Diagram.

2.3.5. Major FSM

The Major FSM controls the entire system of calculations. The Major FSM first makes sure that
upon initialization the system takes in enough data to find a good average. Then, the module does
the necessary data loading to perform the rest of the calculations. Figure 2.3.5 shows the FSM state
diagram.

This module takes in the 27 MHz clock, the global reset_sync signal, the data_ready
signal from the Serial Interface, and the init_out signal from the Initial Register. The Major
FSM outputs an init_reset signal to the Initial Register, load_init and load_reg
signals to the Acceration Register, load_filter to a possible Filter module, and
load_int_1 and load_int_2 signals to the Double Integrator module.

The Major FSM starts in the WAIT state. On a high init_out signal from the Initial Register
(meaning a reset from the user), the state transitions to the INITIAL WAIT state. Here, the FSM
waits until it receives a high data_ready signal to know that there is valid data ready. Also, at
this state, an init_counter is reset to 0. This counter counts to make sure there is the right
number of data points to take the first average. It is important that the system gets the right number
of data points for the first average, because this first average is acc_init, the initial acceleration
used as a reference point. All other accelerations will be subtracted from the initial to get relative
accelerations. In the final project, 4 data points are averaged each time.

On a high data_ready signal, the FSM transitions to the INITIAL state. At this state, a high
load_init signal is sent to the Acceleration Register to load the initial data point. If
init_counter is equal to 4, the next state is the WAIT state again. If the counter is not at 4 yet,
the system must take in more data points, so the FSM transitions back to INITIAL WAIT and
increments the init_counter.

At the WAIT state, if a high data_ready signal is received, the FSM transitions to the
REGISTER DATA state. Here, the module sends out a high load_reg signal to load the data
point to a register.

The next state two states are the INTEGRATE 1 and the INTEGRATE 2states. Here, a high
load_int_1 signal for INTEGRATE 1 or load_int_1 signal for INTEGRATE 2 is sent to

10

the Double Integrator module to perform the necessary computations for integration. The next state
is then the WAIT state to wait for the next valid data point.

reset

load = 1 load_int_1 = 1 load_int_2 = 1

load_init = 1

data_ready

init_reset |
init_counter = 0

init_couter == 4

init_couter != 4 |
init_counter =

init_counter + 1

!data_ready

data_ready

WAIT

INITIAL
WAIT

INITIAL

REGISTER
DATA

INTEGRATE1 INTEGRATE2

Figure 2.3.5: Major FSM Module State Diagram.

2.4. FPGA PS/2 Interface

The PS/2 Mouse Interface takes the position data collected from the accelerometer and translates
the data into mouse movement and sends it to the host in PS/2 format. The PS/2 Protocol also
requires host-to-device communications that set different device options such as device resolution
and requires the proper responses to requests in order for the device to be recognized, and so the
interface controls the input and output status of the clock and data bus lines to account for the
bidirectional communication.

11

Figure 2.4: Block Diagram of PS/2 Interface

The PS/2 Mouse Interface is composed of five high-level modules, as seen in the block diagram.
The interface takes the change in x and y positions, mouse clicks, and a reset signal. The clock and
data are open-collector interfaces that are pulled high when no signal is being driven, and the host
can inhibit communication by pulling the clock low.

2.4.1. Clock Generator

The clock generator simply creates a clock signal by which the host and device read and write data
on the data bus. However the clock cannot always be active; the clock bus is only driven while a
byte is being sent.

(a)

12

(b)

Figure 2.4.1.1: Device-to-host transmission timing (a)
Host-to-device transmission timing (b)

(From http://www.computer-engineering.org/ps2protocol/)

The generator is implemented as a simple FSM with a cycle that handles reading host-to-device
requests and another cycle that handles device-to-host transmissions. The FSM is linked to a
counter and an always active clock signal and outputs that active clock to the bus depending on the
FSM state and the counter value. Note the acknowledgment bit the device sends in the host-to-
device transmission is handled by the RESPOND and RESPOND2 states in the following clock
generator diagram.

13

Figure 2.4.1.2: Clock Generator FSM
enable causes switch to flip, and switch is the always active clock signal.

The output enable for the clock signal is the inverted output clk signal.
(variables in italics are settings, unformatted variables are conditions)

2.4.2. Interpreter

The interpreter takes the mouse movement data and converts it into three 8-bit packets.

Table 2.4.2: PS/2 Mouse Packet

Originally when using positioning to control the mouse, the packet's middle and right button values
are set high if the corresponding button input signals are high, and the left button is set as a
function of the Z position. If the Z position is above the clicking boundary, the left button is
asserted. If the Z position is below the tracking boundary, the X and Y bits are set to zero. For any
Z position above the tracking boundary, the input X and Y data can be copied directly into the
respective packet other than the sign bit, except when the X or Y has moved beyond the 9-bit limit,
in which case the corresponding overflow bit is set high.

14

Because the end design uses tilt to track movement, there is no absolute Z data. Thus the
interpreter's function is to simply package the input X and Y movement data and the clicks into
data bytes for serialization.

The interpreter latches onto incoming X and Y data when a load signal from the FSM goes high. It
checks to see if there is any X and Y movement or a change in a mouse button state first, and if no
changes are detected no updates are required. Otherwise the interpreter sends a signal to the FSM
to begin transmission and holds the signal high until the FSM responds to signal the update has
been fully transmitted.

2.4.3. Serializer

The serialization module takes data bytes and converts them into 11-bit reversed packets of data in
the PS/2 format. The 0-bit is output to the data bus and then the 11-bit packet is bit-shifted, so on
the next clock cycle the next bit is output on the 0-bit, until the entire 11-bit packet has been
transmitted across the data bus. Serializer is triggered when the clock generator produces a clock
and the interpreter update signal is high.

2.4.4. De-Serializer

This module takes the data bus input stream and converts it into an 11-bit packet, which can then be
read by the FSM. It stores the bits in a9-bit value as they stream in, bit-shifting left on every cycle,
and when the module detects that the data has been loaded in it latches onto the 8-bit request stored
in the message and outputs it until it is flushed before the next incoming message. The module
loads a default value of all ones into the 9-bit storage value until the host activates the device read
state, at which point the module loads the 0 start bit into the LSB. When that 0 reaches the MSB
due to bit-shifting the other eight bits contain the relevant data byte. The system does not error
check at this time; a simple restart re-synchronizes the device with the host.

2.4.5. Finite State Machine

The finite state machine (FSM) module controls the operation and timing of the separate modules.
Because the clock and data buses are bidirectional, the FSM must halt operation of the output when
it detects the host sending a request, and must also control the response to the host's request.

15

Figure 2.4.5: PS/2 Interface FSM
Above the dotted line, the data enable signal is low.

mupdate is a signal from the Interpreter initiating device-to-host transmission.
r_Sel is a selector that specifies responses to host requests.

The read/response cycle on the left of the state diagram is activated when the host signals a request
by pulling the clock line low for at least 100 ms, pulling data low, and then releasing clock. The
data is read in the READ state, and once it finishes the device processes the request and responds
with the appropriate data bytes.

The write cycle on the right is activated when the Interpreter module signals that an input needs to
be transmitted to the host. The device can only write if the clock line has been high for 50
microseconds, and so before all write states the diagram indicates this condition must be met.

Upon power up or reset, the FSM enters the RESET state, which then moves into the response
states. The purpose of this is to synchronize the device with the host upon device boot-up.
Without proper initial synchronization, the device will not be recognized as a mouse input device
and inputs will be read by the host as keyboard data (by default).

3. Design

16

We originally planned to calculate the absolute position with the accelerometer. However, through
much testing, we discovered that the change in acceleration due to tilt is much greater then the
acceleration caused by hand movements. Therefore, the accelerometer was moved around, the
acceleration outputted did not always reflect the acceleration of the hand, but it reflected better the
amount of tilt. We did not have the components or time necessary to compensate for this obstacle,
so we settled with the tilt mouse.

Different types of filters and decay constants were also considered to minimize noise and clean the
signal. The filters intent was to clean out the noise caused by hand vibration. However, the
vibration caused by the hand is on the order of 1Hz. A simple averaging technique and disregarding
the lower 3 bits were enough to cancel out the noise.

4. Testing and Debugging

For testing the entire system, we tried to modularize the system, so that we can just test each
module separately. Each part was tested with simulations on ModelSim (if simulations were
possible) and then tested with a set input independent from the other parts.

4.1. Wireless (by Shirley Li)

The wireless portion of the project was relatively self-contained and readily tested. The LED's on
the evaluation board were programmed to indicate various activities, such as data reception and
packet error. The UART cable could be connected directly to a computer hyperterminal to see the
values of different variables or the output of the ADC. The waveforms of the UART output could
also be determined by probing the data line with either the oscilloscope or logic analyzer.

4.2. FPGA Serial Interface (by Joseph Cheng)

The Serial Interface was first tested through ModelSim simulations. Through simulation, the right
state transitions in the FSM and the right signals were verified. The Serial Interface was ultimately
tested with some random signal sent from the wireless kit through the UART cable. The logic
analyzer was used to make sure that the signals behave accordingly in the real world. Since each
set of data points is inputted at large intervals apart, the logic analyzer was triggered to the start bit
of the data points.

4.3. FPGA Calculations (by Joseph Cheng)

The FPGA Calculation modules were also all tested first with ModelSim simulations. The modules
were then programmed onto the FPGA.

In order to make this portion independent from the Wireless Kit, and PS/2 Interface, a set of three
AD670 analog to digital converters were used to convert the analog output from the accelerometer
to an 8-bit digital format. The same FSM from Laboratory 3 was used for this portion to drive the
AD670 analog to digital converters. Three AD670 chips were used to convert the three different
analog inputs for the three different axes.

17

The Labkit itself also provided a lot of helpful tools to debug the system. The switches, LEDs, and
alphanumeric display were all used to help display the different data points, including the raw
accelerometer data, initial acceleration, relative acceleration, velocity, and position. The different
displays were especially useful in testing the accelerometer itself, determining the nature of the
accelerometer, and fine tuning the calculations for appropriate output.

4.4. FPGA PS/2 Interface (by Matthew Tanwanteng)

The PS/2 Interface was tested and debugged by simulation on ModelSim as done in previous 6.111
labs. Because of the difficulty in emulating a host response, only the write cycle could be
thoroughly simulated in ModelSim. Initial testing on the FPGA was limited to making sure
transmissions successfully sent the three mouse data packets across a bus with no host device.
Testing with an actual host was limited because the computer next to the labkit would not release
the data line, and I assumed some other part of the FSM or output was broken or synchronization
could only occur on computer restart, which was difficult to test. When it turned out that other
computers did not hold the data line like the one connected to the labkit, I was then able to begin
testing synchronization with an actual host.

The transmission of mouse updates to a live host introduced some issues that ModelSim testing
could not reveal. The host upon receiving a transmission holds the clock low to inhibit further data
until it can process the current data, but it sometimes releases the clock for a cycle or brings data
low before releasing it. These glitches made it necessary to implement stricter rules on the FSM to
make sure it resumed the transmission when the host finished processing and released the clock
once again.

The longest issue was synchronization. It took a while before I realized the device has to send the
synchronization responses on boot-up without the host sending a request first. Then the exact
sequence of responses must be made to following host requests, and leaving a single response out
caused a major hold up. That one response caused synchronization to fail, and so despite all other
signals being perfectly timed, the host computer still failed to recognize the input as a mouse and
nothing worked.

After synchronization succeeded, everything worked perfectly, with the exception of a timing issue
which caused duplicate sets of mouse packets to be transmitted and glitches in on-screen mouse
movement. That was solved by adding more Interpreter<->FSM communication.

4.5. Integration

Since each component was well separated, integration was not too difficult. The main obstacle was
the connection on the wireless kit evaluation board. The power supply was not properly connected
to the evaluation board, so the evaluation board kept turning off and on. When one component
broke down, the entire system became extremely difficult to debug and to test.

4. Conclusion

18

The project was completed successfully. The mouse on any computer with a PS/2 port could be
controlled wirelessly by tilting the hand. The sensitivity of the cursor in response to hand
movement was moderate, giving the user fairly good and smooth control.

The project could be improved and further developed in many ways. The first step would be to
implement the project based on absolute positioning of the hand, instead of using acceleration
measurements of tilt. This would involve developing an algorithm that effectively compensates for
integration drift. This could possibly be done by incorporating proportional or exponential
damping factors and bandpass filters in the position calculations. If absolute position capabilities
are developed, incorporating mouse button clicks into hand motion would not be difficult. The
wireless system could also be improved by increasing the speed of transmission. The rate at which
data is being transmitted through the air is currently the limiting factor of the speed of the system.
By increasing the transmission rate, more accelerometer data points would be accessible and the
movement of the cursor could be more exact.

The project has many fun and practical uses. In addition to using it to perform the regular mouse
duties, the project can be used to play mouse-controlled computer games and many other
interactive games. Also, since the RF radio has very good range of operation, the mouse would be
handy in large lecture hall settings or during presentations.

19

