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Abstract

AM radio reception is conventionally done by using analog circuitry. However,
this paper describes the design and implementation of a digital AM receiver.
The receiver digitizes the entire AM band, executes digital signal processing, and
extracts the radio channel that the user desires. The receiver is a combination
of digital signal processing and a user interface designed to achieve a powerful,
user-friendly AM receiver.



Chapter 1

Introduction

Implementing an AM radio using analog electronics has always been the norm.
However, with digital systems improving and becoming more powerful, it is
becoming easier to do some things that are usually done in analog circuitry in
digital circuitry. Therefore, the Digital AM Receiver is a digital system that
attempts to achieve the same analog AM radio functionality by just using an
FPGA and a small of amount of analog electronics to interface with the real
world.

The motivation for this project came from the work done on software radio
by companies like Vanu. Software radio allows a single device to receive many
different wireless transmissions. By using digital signal processing techniques
in the FPGA, the software radio could possibly be achieved in digital systems.
However, since building an AM radio is quite easy to learn, it was sensible to
focus on AM radio transmission instead of FM and other more intricate wireless
transmission. This project is worthwhile also because it develops digital design
techniques that can be applicable to more advanced communication systems.
For example, this project could be expanded to receive FM and other wireless
transmissions if the necessary modifications are made on the fundamental blocks.

1.1 Overview

The Digital AM Receiver will be implemented in four main parts: the Analog
Front End, the Digital Signal Processing unit, the User Interface, and the Dis-
play. The Analog Front End will receive the entire AM frequency band, which
ranges from 530kHz to 1700kHz. The Front End passes the desired frequency
band and digitizes it with an ADC. Next, the digital signal processing module
extracts a particular radio channel and demodulates it to retrieve the audio sig-
nal. The User Interface module enables the user to customize the system to his
or her preferences. For example, the user can program presets for favorite radio
stations, pause and replay live broadcast, or simply scan through the AM radio
transmissions. Finally, the display provides the user with real time information



about the system (i.e. Paused, Replaying, Scanning, etc.), instructions, options
that have been selected by the user, and signal waveforms. In Figure 1.1, the
entire Digital AM Receiver is shown with its major components: Digital Sig-
nal Processing module, Video module, and User Interface module. Each of the
modules will be discussed in greater detail below.
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Chapter 2

Architecture

2.1 Analog Front End

The analog front end, the unit that receives the entire AM band and digitizes
it, was designed and built by Joe Sousa at Linear Technology. By using the
ADC chip he designed, the LTC1403A, the system was able to achieve 14-
bit digital resolution at about 3 megasamples per second (MSPS). However,
the ADC produces a serial output, so a serial-to-parallel converter was used.
The converter was comprised of 19 registers. The reason is that the complete
conversion to 14-bits requires 18 cycles. And after every cycle, the 14-bits
propagate through the 18 registers. After conversion is done, the 19th register
takes in 14 of the 18 register outputs as inputs. The output of the 19th register
is then the parallel data from one conversion cycle. After the 19th register has
latched its input, a ready signal is sent to the DSP module to indicate that a
new 14-bit sample is ready.

2.2 Digital Signal Processing

Many approaches can be adopted to demodulate AM frequency. The one that
was chosen in this project consists of two important stages:

1. Down Conversion: Multiplication of signal in time domain by sinusoidal
wave of the appropriate frequency of the radio channel to bring the signal to
the base band.

2. Low-Pass Filtering: Convolution in time domain of the signal with an
impulse response that attenuates frequencies higher than 5 kHz. The low-pass
filter removes all the signals at higher frequencies, selecting only the demodu-
lated signal at the selected frequency pass through.

This modulating scheme was first tested in Matlab. The Matlab code for
the simulations is included in the Appendix. Recorded Audio signal was first
modulated at different frequencies and then all the signals were added to model
a radio spectrum in air. The original audio signals were successfully recovered



when the demodulation technique mentioned above was used to demodulate the
signal at the appropriate frequencies.

Matlab was used to generate the coefficients for the sinusoidal wave and an
Finite Impulse Response (FIR) filter of 30-taps. For a start, 1030 kHz was chosen
as the radio frequency to demodulate which corresponds to WBZ news radio,
a Boston based radio station. Another frequency that can be demodulated is
850 WEEI, a Boston based sports radio channel. Since the coefficients of the
sinusoidal wave are stored in a ROM, more radio frequencies can be added just
by storing corresponding sinusoid coefficients in the ROM. The sinusoids were
generated using Matlab.

The sampling frequency of the system had to meet Nyquist criterion. Since
the AM radio band ranges upto 1700 kHz, we need to sample around 3.5 Msps
or higher. During the initial stages of the project, an ADC of a speed of 3 Msps
was chosen because of its special noise filtering feature. This ADC, thus, limits
our resolvable frequency band to 1500 kHz at the upper limit.

The ADC clock runs at 55 MHz. In order to be in sync with the conversion
of ADC, the system clock also runs at 55 MHz. There is one output sample
computed for every input sample. So there are only 18 clock cycles for a complete
cycle of the system. Keeping in mind the propagation delays associated with
arithmetic operations such as multiply and addition, and given the high clock
rate that the system is running , one of the biggest challenges in making the
system was to drive the Digital Signal Processing at this speed.

Parallel processing is the solution when it comes to driving systems at higher
speeds. The DSP module carries the same theme in its design. Apart from the
register file, ROM and the output latch, every other digital logic in the system
is combinational. Down coversion only takes about a cycle in terms of prop-
agation delay, since it is just a single multiplication. The hard part is to do
the convolution with the 30-tap FIR. Rather than adopting a serial approach of
using an accumulator which sums up results of convolution multiplication oper-
ations, the system is implemented by computing every multiplication required
in parallel, using 30 2-input, 18-bit multipliers, and then adding all the results
in parallel as well through a 30-input 32-bit adder. Fig. 2.1 on next page shows
the system block diagram of the DSP Module.



Figure 2.1: DSP Module

The DSP module takes in data inready signal from the Analog Front End
in addition to the 14-bit data stream. The DSP FSM triggers on the a 4 cycle
registe m ,ela%mgn | of data__inready. The signal is delayed just to make sure
thaggtle=nropagatitih of the down coversion multiplier has been met and
the datais ﬁegg\ 16 helstored in the 30 tap delay register line. Next, the down-

gzonample is st(i in the register line. The most recent downcoverted

sampl¢ rgets stored at the beginning of the delay line while every other data
storedlin the register delay line gets shifted down the line by one. The oldest
data is discarded while the 2nd to oldest data takes its spot. Every logic used
after this point in system is combinational. The thirty data points are hardwired
to a 30 input constant multiplier. The coefficients of the FIR are hard coded
into the multiplier and they multiply the data through the delay line from
the register file according to the position of the coreresponding downconverted
data in the delay line. The multiplier sends all the computed 30 muliplication
results to the 30 input adder, which sends out the computed result after some
propagation delay. The propagation delay for the whole convolution process
is several cycles which we conveniently meet in context of the upper limit of
18 clock cycles per sample on one cycle of computation. The data is latched
towards the end of the available number of cycles for interfacing with the audio
controller part of the project. The system then goes into the a state where it
looks at the data inready signal to start another cycle of computation going
through the same steps outlined in this paragraph again and again.

2.3 User Interface

The user interface allows users to interact with the core of the system. Users
can customize the system in any way they like. Features available to the user
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Figure 2.2: User Interface Block Diagram

include selecting and playing different radio stations, pausing and replaying a
live transmission, book-marking various stations (similar to the preset system
in an automobile), and auto-tuning to different stations. Users interact with
the system through switches. A detailed block diagram for the user interface is
shown in Fig 2.2.

The user interface is essentially divided into two parts that run on different
clocks (the 27 MHz system clock and the AC97 codec clock we will talk about
the AC 97 codec in more detail). Any control signals that go from the main
system to the AC97 system are registered at the AC97 clock (for instance, the
digitized signal from the DSP module that needs to be output to the speakers),
while control signals going in the other direction are registered at the system
clock.

In the main system, all switch inputs pass through the Synchronizer, which
consists of a pair of registers. All synchronized inputs go directly to the Major
FSM. Additionally, the channel/frequency select input passes through a level-
to-pulse converter that sends out a pulse to the Major FSM whenever the user
selects a different station.

2.3.1 The Major FSM

The Major FSM receives all inputs and coordinates the minor FSMs based on
those inputs. The implementation of the Major FSM is summarized by the
state transition diagram of Figure 4.4. The FSM has five states; namely IDLE,
CHANNEL, PB, START AUTO and WAIT AUTO. The FSM has as inputs
and outputs handshaking signals to and from the minor FSMs. In addition,
it also controls the multiplexors at the output to the DSP module and to the
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Figure 2.3: Major FSM

speakers by sending out control signals for those muxes.

The Major FSM is in the IDLE state by default. It transitions to different
states depending on user inputs. When the user changes channels, the level-to-
pulse detector outputs a pulse that makes the pulse input to the FSM go high.
The FSM then transitions to the CHANNEL state. It sets the control of the
DSP output multiplexor so that it can output its own frequency value to the
DSP module, and sets the output frequency bit based on the position of the
channel selection switch. The FSM then transitions back to IDLE.

If the user wants to pause/replay a live transmission, or to bookmark a
particular channel, the FSM transitions to the PB state. It sends a start signal
to either the Pause Minor FSM or the Bookmark Minor FSM depending on
whether the user requested pause/replay or bookmark. It sets the control signal
(ctrl) to the DSP output mux so that the frequency can be directly output by
the Pause Minor FSM or the BookMark minor FSM, and also sets the control
signal to the speaker output mux (ctrl out) so that the signal can be output
directly from memory rather than the DSP module in case the user requested
a replay.

In case the user requests auto-tuning, the FSM transitions to START AUTO,
and sends a start signal to the Auto-tuning Minor FSM. It waits in this state un-
til the Minor FSM asserts the busy signal, and then transitions to WAIT AUTO,
where it sets the control bit for the DSP mux so that the DSP frequency can
be output directly from the Auto-tuning FSM, and waits for the minor FSM to
finish operation.
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Figure 2.4: Auto FSM

2.3.2 The Auto FSM

The Auto FSM is responsible for auto-tuning to different radio stations. It

does so by computing the FFT of the input signal from the ADC and identify-

ing peaks and the corresponding frequencies. The FSM therefore also controls

the FFT module. The implementation of the Auto FSM is summarized by the

state transition diagram of Figure 2.4. The FSM has eight states; namely IDLE,

WAIT VSYNC, COMPUTE_ FFT,UNLOAD, WAIT DISPLAY1, WAIT DISPLAY2,
TUNE and PLAY STATION. The FSM has as inputs and outputs handshak-

ing signals to and from the Major FSM and control signals to the FFT and the
corresponding RAM.

The FSM is initially in the IDLE state. When the user requests auto-tuning,
the Major FSM sends the start auto signal to the Auto FSM, which then
transitions to WAIT VSYNC. The FSM waits in this state until the v_sync
signal goes low, and then transitions to COMPUTE FFT. The FSM sets the
control signals for the FFT module and sends it a start signal to indicate that
FFT computation is ready to begin. It waits in this state until the fft done
signal goes high, indicating that the FFT computation has ended and data is
ready to be unloaded. When it receives the fft done signal, it moves to the
UNLOAD state, where it routes the data from the FFT to the FFT RAM and
sets busy _write high to indicate to the Video module that data is being written
to memory. The data is in real and imaginary format, and must be squared
and added to compute the magnitude before it is stored. This is accomplished
through multipliers and adders. Since the resolution of the FFT is 1024, the
FSM waits in this state for approximately 1024 clock cycles in order to ensure
that all data has been unloaded from the FFT module and stored in the RAM.

The FSM then moves to WAIT DISPLAY1 and WAIT DISPLAY2, where
it waits for the Video module to read the data from the RAM and display it on
the screen. When the display is done, the FSM moves to the TUNE state in
order to begin the auto-tuning. The FSM selects a RAM address and moves to
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Figure 2.5: Bookmark FSM

PLAY STATION, where it compares the data value from that RAM address
to a threshold of 210, by checking to see if the first five bits of the data value
are zero. If it is below the threshold, the FSM transitions back to TUNE and
looks at the next RAM address. If the data value is actually greater than the
threshold, the FSM outputs that frequency to the DSP module so that the
station can be played. The FSM will transition back and forth between TUNE
and PLAY _STATION until the user de-asserts the auto-tuning input.

2.3.3 The Bookmark FSM

The Bookmark FSM is responsible for presetting different switches for play-
ing certain stations. The implementation of the Book FSM is shown by the
state transition diagram of Figure 2.5. The FSM has four states; namely IDLE,
READ, WAIT and WRITE. The FSM takes as inputs the signals Reset Sync,
start_book (from the Major FSM), expired (from the timer), data_in (from
the Bookmark RAM, which implements a table lookup memory for storing data
about preset stations), and other signals from the Major FSM that carry infor-
mation about precisely what button has been pressed, and outputs the signals
busy _book(to the Major FSM), control signals to the timer, and control signals
to the Book RAM.

The FSM is initially in the IDLE state. When the user requests book-
marking or playing a previously bookmarked channel, the Major FSM sends a
start book signal to the Bookmark FSM, and also tells it whether or not the
user has been holding the reset button down. The FSM then transitions to the
READ state, and does a read operation on the Book RAM in order to find out
if that button has been preset before. If the button has been previously preset,
the BookRAM outputs the corresponding station frequency to the DSP module
and moves back to IDLE. If the button has not been preset, the FSM moves
to WAIT and waits for the user to hold the button for a period of 5 seconds.
It measures 5 seconds by making use of the expired signal from the timer.
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If the user releases the button before 5 seconds have elapsed, the FSM simply
transitions back to IDLE. If the user does hold the button for 5 seconds or more,
the FSM transitions to the WRITE state, and stores the button (represented
as a binary string) and the corresponding frequency value in the Book RAM by
doing a write operation. The FSM eventually transitions back to IDLE.

2.3.4 The Pause FSM

The Pause FSM is responsible for pausing and replaying a live transmission.
It does so by storing the digitized signal from the DSP module into memory,
and replaying the stored signal from memory. The implementation of the Book
FSM is shown by the state transition diagram of Figure 2.6. The FSM has
three states; namely IDLE, PAUSE, and REPLAY. The FSM takes as inputs
the signals Reset Sync, and start pause and signal (from the Major FSM),
and outputs the signals busy pause(to the Major FSM), and control signals to
the Book RAM.

If the user requests a pause in the current transmission, the Major FSM
sends it the start pause signal and tells it whether the request is for pausing or
replaying. The FSM then transitions to PAUSE, and writes the signal coming
from the DSP module to the Pause RAM. It then transitions back to IDLE. If
the user requests a replay, the FSM moves to the REPLAY state, and routes
the data stored in the Pause RAM to the output speakers through the speaker
output mux.
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2.3.5 The AC97 Codec

The other part of the system consists of the AC97 codec, which runs on the
AC97 clock. The AC97 codec downsamples the digitized signal from the DSP
module to 48 kHz so that it is in the audible range for humans, and can be
heard on the speakers.

2.4 VGA Display

The VGA display, as shown in Figure 2.7, provides a means for the user to
interface with the Digital AM receiver by providing the user with a user menu,
Fourier transform of the AM frequency band, real-time information about the
status of the system, and the name and station that the user is listening to.
With this graphical interface, the user can take full advantage of the features of
the Digital AM receiver.

The VGA output is timed by a 27 mHz clock which is converted to a 50 MHz
pixel clock for 800x600 VGA at 72 Hz. The VGA control block, by using the
pixel clock and the parameters for screen resolution and refresh rate, outputs
control signals are sent to the DAC in the labkit.

The VGA control block also communicates with the RAM control and ROM
control in order to access the RAM and ROM, respectively, to output the display
correctly. The RAM will store the dynamic information, the Fourier Transform
magnitudes, that will change during the usage of the system. However, the RAM
will only be written by the FFT module and will be read only for displaying
the FFT. The ROM will store the static information, the character 8x12 bitmap
representation, that will be initialized but will be read throughout system use.

The VGA Control is designed to make decisions on what to output to the
display based on a grid with the number of character horizontally and vertically.
If the VGA Control was at pixel point (16,24), this point represents character
(2,2). The VGA control runs through all of the character coordinates and
decides what character to output by either looking up a RAM, for dynamic
text, or immediately looks up the ROM for a hard-coded character. Actually,
implementing the control signals for accessing the RAM and ROM was only
based on counters, and no FSMs were used. This is a design choice discussed
below.

The RAM interpreter module is used to read the magnitude values of the
Fourier Transform that are stored in the RAM and decide on the height of the
character points to display the waveform. For example, if the FFT magnitue at
frequency 700kHz had a magnitude greater that 2, the RAM interpreter would
plot in bar graph form that FFT magnitude. Also, the data is written to the
RAM in such a way that the FFT magnitude corresponding to a certain fre-
quency is stored in the same location in RAM for every FFT process. The reason
is that as the VGA control module sweeps through the horizontal dimension on
the display, which has been plotted to represent frequencies in the AM band,
the RAM Control module should only have to look at the same address location

12
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that corresponds to a certain frequency.
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Chapter 3

Design Methodology

3.1 Analog Front End

Although it would have been desirable to maintain the original idea of our
project of receiving true AM radio waves, after doing several tests in the lab,
we realized that AM reception would almost be impossible in the lab. The lab
behaves like a Faraday cage and receiving electromagnetic waves in the AM
band proved to be very difficult. Therefore, we sacrificed the antenna and AM
radio reception, and resorted to directly feeding in an AM modulate signal to
the ADC module. This tradeoff was made because this modified setup would
still be able to prove the functionality of the digital AM receiver. Also, it avoids
the possible noise that is introduced from the recption itself by using an antenna
and other analog parts.

Also, since the ADC produces the digital signal in a serial format, with the
MSB produced first, a module was made to convert this serial signal into a 14-
bit parallel signal to be used by the digital signal processing unit. This tradeoff
was made because using the data serially would have been inefficient when it
was time to carry out the digital signal processing.

3.2 Digital Signal Processing

Many critical design choices were made throughout the design and implemen-
tation part of the system.

Going back to the basics of the digital signal processing required to de-
modulate a signal, the particular adopted technique in this module was chosen
because of its edge over all other techniques in terms of the amount of computa-
tion involved. This technique reduces the demodulation into its most basic and
only necessary steps: downcoversion and low-pass filtering. This is in contrast
to conventional AM radio designs where another stage is added at the beginning
to band-pass filter the radio spectrum, only selecting the radio band one wants
to listen to. The next steps to follow are the usual down conversion and low-pass
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filtering. The additional stage is just added to compensate for the imperfection
in the real world filters in terms of not completely nullifying the signals in the
stop band and the transition region. Additional stages can also be added to the
current DSP methodology to improve the quality of demodulation.

Another important design choice was the number of the taps for the FIR.
The Matlab simulation mentioned in the implementation part was modified to
be discretized to 16-bit numbers and ran with filters of different tap sizes. A
copy of the Malab code is included in Appendix. Distortion in demodulated
signal appeared around a size of 30 taps, and so a 30 tap filter was chosen for
the FIR for the DSP module.

At the hardware implementation level, there were more decisions to be made
about the digital architecture. Many of the initial decisions turned out to be
unsuccessful and they had to be changed later. One example is how the design
for implementing convolution developed. Initially, the digital architecture was
designed to preserve all the new bits that were created as a result of a multipli-
cation or an addition. As a result, 61 bits, an unusually large number of bits,
came out of the DSP module. The convolution was designed to be carried out
in 6 cycles, using a 10-input (5 pairs) of 28-bit multipliers and a 61-bit accumu-
lator. When the system was simulated after incorporating all delays post map
and route, the timing constraints turned out to be not met. The clock speed
was too fast for the design. Different techniques were employed to work around
this problem. The number of bits were truncated after every stage to decrease
the size of the logic; the unused clock cycles of 18 clock cycle time were used to
give twice as much time for the multiplier and accumulator to finish processing
and lastly, the convolution multiplier and accumulator were pipelined. All these
steps made the propagation delays smaller but one could see large propagation
and contamination delays in the timing diagrams. The fsm could have been
designed to work around it. However, after consultation with the Professor
and the Teaching Assistant, it was decided not to take that route because the
Modelsim delays did not really defined contract on the system timing; they are
just approximations. So it was decided to expand the digital architecture to
buy more time for processing. The convolution system was changed from a se-
quential logic to a combinational logic architecture where 30 18-bit multipliers
were put in to get all multiplication results in serial simultaneously and add
them serially as well using 30 adders. The simulations for the revised system
pleasingly showed that the output was ready well in time before the end of the
upper limit of 18 clock cycles.

Although it was difficult to make all these decisions but it increased un-
derstanding of how digital systems work and how different approaches affect
the speed and size of digital logic blocks. Implementing the DSP module thus
revealed the inside limitations of digital logic, particularly the duality between
size and speed.
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3.3 User Interface

There were quite a few design decisions that were made regarding the design of
the user interface. Since the user interface was also responsible for interacting
with the AC97 codec (that operates on a different clock frequency) in order to
output data to the speakers, the most important design decision was to tackle
two different clock frequencies at the same time. This issue was resolved by
dividing the system into two parts as naturally as possible, with both parts
running on different clocks. The aim was to minimize the number of signals
that crossed the interface between the two parts. The signals that did have
to cross the interface were registered at the clock of the sub-module to which
they were input. The main issue was deciding about the location of the pause
RAM, since it had to interact directly with both the Pause FSM, which ran on
the system clock, and the AC97 codec, which ran on the AC97 clock. It was
decided that it would be best to clock the memory on the AC97 clock, since it
was supposed to output data to the AC97 codec. If the memory were run on
the system clock, the data would first have to be registered on the Ac97 clock
before actually being routed to the speakers. Since the aim was to minimize the
number of signals crossing the interface, it was achieved by running the memory
on the AC97 clock.

Other design decisions that were made were regarding the freedom to be
provided to the user in customizing the system. It was decided that the user
should not be able to change channels while pausing or bookmarking a channel.
This meant that the Major FSM had separate states for channel selection and
for pausing and bookmarking. However, the user was given the freedom to
pause/replay a channel and to bookmark it at the same time. Consequently,
the Major FSM had a single state for both pausing/replaying and bookmarking,
and both the Minor FSMs were triggered from that state, depending on the
inputs.

3.4 VGA Display

A VGA with a resolution of 800x600 is almost impossible to manually encode 1’s
and 0’s to represent the displayed picture. However, since the display displays
mostly ASCII characters, it is better to design a system that is concerned with
characters, and has a separate code that paints the pixels that represent the
characters. Therefore, when the VGA control module lands on a point on the
screen that represents the character point (2,2) and that character is an ASCII
character #65 (represents A), the code then addresses the character ROM to ob-
tain the bitmap of that character. With the bitmap, the system sweeps through
the vertical and horizontal dimensions, by incrementing variables vert _char and
horiz_char, of the character bitmap and look for any 1’s. If a 1, a foreground
color is displayed and if a 0, a background color is displayed. We felt that this
design choice saved us a lot of time, but the tradeoff was that we could not dis-
play more than one symbol per character location. Actually, it basically meant
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that we working with a screen with a resolution of 100x50.

Another decision we made was that we did not need any FSMs to achieve
a VGA display. At first, I approached the task with FSMs in mind. However,
while designing the display, I realized that a counter would suffice. Actually, I
am quite convinced that the counter is the best approach for a video display
because it is a repetitive process. With a counter sensitive to the pixel clock,
one can confirm that timing issues are hardly a problem.
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Chapter 4

Testing

4.1 Analog Front End

There were several problems with the anlog front end. The first, as mentioned
above, is that AM reception in the lab was almost impossible. The antenna
could have been improved to increase its reception quality, but that would have
been extremely difficult and time consuming.

Another problem was the signal integrity of the digital outputs that were
connected to the FPGA. The signals were so noisy that it worsened the perfor-
mance of our system. The cause of this problem was that the analog front end
output signals, ClkOut, Fsout, and Dout, were transmitted over approximately
50  transmission lines. The lines were terminated correctly, but the wires in-
troduced so much parasitics, that the signal had degraded. From looking at the
logic analyzer, the ADC was generating a good 55mHz clock and a conversion
signal every 18 cycles, but was generating random high bits even with 0 V input.
This noise was actually quite audible during testing. Figure 4.1 shows a sample
waveform produced by the ADC with a Ov input.

Sample

58mHzclock

CONY

OuTPUT



Figure 4.2: Post Map and Route Simulation

4.2 Digital Signal Processing

Figure 4.2 shows the post map and route simulation waveform for critical test
signals across the different modules in the DSP module.

The data_in_ready signal is delayed through four register so that by the
time the FSM detects that there is an input sample, the input signal is already
passed through the multiplier and reached the register file, ready to be stored.
The write enable signal goes high for a cycle so that the register file can store
the new demodulated data and shift the rest by one. The critical path delay
then passes through the multiplier into the adder and after a few cycles the
output signal is ready at the output of the adder. After waiting a few cycles to
allow for the propagation delay through the combinational logic, the output is
latched into out dsp by asserting the output enable signal high for one clock
cycle. The timing of write enable and output enable works as a first in first
out (FIFO) buffer. So the register file is not written until the previous data has
been latched away. And similarly, the output enable is not asserted high until
the signals has gone stable after all the propagation delays.

4.3 User Interface

Testing the user interface was somewhat difficult, because the outputs of the
user interface were internal to the system, and were actually inputs to other
modules, rather than outputs of the system as a whole. Consequently, the major
technique employed for testing and debugging the user interface was through
simulations on ModelSim and Max+II. In order to further test the system, the
user interface outputs could be connected to video and their correctness could
be verified. Simulations on ModelSim helped a lot in debugging, and the post-
map and post-place and route simulation tool in Model Sim was very accurate
and helpful in demonstrating the actual gate delays on hardware. Shown below
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are simulations for the main modules of user interface.

4.3.1 Book FSM
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Figure 4.3: Book FSM Simulation

4.3.2 Major FSM
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Figure 4.4: Major FSM Simulation
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Figure 4.5: Simulation

4.4 VGA Display

An important detail to look at when doing VGA testing is timing. As stated
before, the counter was chosen to help alleviate any timing issues. If timing was
incorrect, one would see that the screen had lines and characters misalligned. It
was crucial to ensure that the timing between the FPGA choosing a character
to display and actually displaying it is constant. If it was not constant, parts
of characters would overlap and very little would be discernable. Therefore in
my testing, I made sure that the time for a pixel to output was the same for
both when content information came from the RAM or from hard code. Also, I
made sure that as the bitmap of the characters returned from the ROM I was
picking the correct pixel to display. There were several cases in my simulations
that I saw that the character bit representation was off by a couple of pixels.
However, by fixing how the module reads the horiz__char variable to select that
bit of the 8-bit row of the pixel, the problem was resolved.
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Chapter 5

Conclusion

The Digital AM receiver receives the entire AM frequency band, digitizes it,
and processes the digitized AM band. When the user selects a station, the dsp
module selects the appropriate channel and plays it out to the user. Our goal
was to implement a Digital AM receiver that achieves the same functionality
as a conventional analog AM receiver. With additional features such as a video
display and a user interface, the Digital AM receiver was intended to be a rich,
full-featured AM receiver implemented in the digital domain.

Though we were unsuccessful in completely achieving our project, there are
a number of valuable lessons that were learnt in the process of implementing
the DSP module. There are real constraints on the speediness and accuracy of
the execution of the signal processing done in digital domain. However, these
constraints can be offset by expansions in digital architecture. Another lesson
learnt was that the new labkit is huge in terms of gates but slow as far as
the propagation delays associated with wires is concerned. The state signal
which is just a register, changed after half a clock cycle. As far as digital AM
radio is concerned, there are ways to improve it. More radio frequencies can be
downconverted by storing more samples in the down conversion ROM. The filter
size can be increased to implement a better low-pass filter using the remaining
built-in multipliers in the labkit. Also more work can be done on the analog
front end so that a better signal comes to the DSP module.

This multidisciplinary topic project helped us apply the powerful digital
concepts we have learned this year and yet learn other concepts beyond the
scope of this class. The final project was a great way to conclude this challenging
term of fundamental concepts in Electrical Engineering.
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