
 1

Musical Sculpting: An interactive filtering project. 
 
 
Abstract: 

 
The following project contains the details of our attempt to implement a smart 

audio tool that ads the ability to interact with music provided by a CD player. With 
simple hand movements, the system allows a user to modify music in real-time, changing 
the intensity, tempo, pitch, and timbre. A digital camera detects the change in movement 
which will then be used to select and modify several digital filters used on the musical 
input. The filtered music will then be outputted through a set of speakers, and a  visual 
representation of the filter and the filtered music in the frequency domain can be 
observed on a monitor.  
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1.1 Project Overview: 
 
1.1.1 Basic Synopsis:  
1.1.2  

The basic idea behind our project is the goal to create an interesting tool for a user 
to manipulate and filter real-time music in a hands-on and comprehensible way. Most 
music filtering and mixing tools that these days seem to be software constructions that 
while comprehensive and very powerful, end up being very complicated – and 
sometimes, especially when one is new to the field, it is hard to tell what filtering one 
way, or amplifying in another way, will actually do to the music. Therefore, as is the case 
with most artistic creations, we felt it important to have more hands-on interactive option. 
With this tool, the user can not only hear the effect of their changes in real-time to music 
that they input, but also see the modified music and filter projected on a video screen  – 
really allowing them to really get a better grasp of how their particular modifications are 
actually impacting and changing the music. 

 
1.1.3 Basic Block Diagram: 

 
 

As is evident in the basic block diagram above, the whole system structure is 
divided into three main parts: Inputs, Filtering, and Outputs. These pieces are all 
modular, and were created separately from the rest and knitted together towards the end 
of the project.  

The Input block takes in data from the cd-player, as well as the video coming 
from the digital camera. After sampling, the Input data outputs the musical information to 
the FFT block, where it is stored and used to create the filtered music. The Input block 
also handles the interpretation of the captured video, which after sampling it sends it to 
the internal ‘Video Analyzation’ block. This block then interprets the data, and outputs a 
vertical and horizontal pixel position to the rest of the system. 

The Filtering block is obviously the filtering block of the whole apparatus. This 
particular modulus block takes in the current pixel position of the user’s LED pen, as well 
as the sampled musical data from the cd player, all signals that are provided from the 
Input block. In turn, it first stores the sampled musical data in an SRAM. Then, using the 
pixel position input, it computes the horizontal movement change since it’s last sample, 
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and uses this movement to compute a new filter. This filter is then applied to the stored 
music by a continuous FFT operation, and outputted as filtered data.  Also, the filter itself 
is outputted, so that the Output block, which is handling the video visualization, can 
interpret the data and project it to the screen. 

The Output block takes the inputs from the Filtering block and interprets them in 
a way that allows them to be easily visualized upon the screen, as well as actually 
handling the filtered music and outputting it in a way that allows it to be listened to by the 
user. Sampling the data at a slower rate, to help eliminate noise, the Output stores the 
values in its own SRAM. Then, using a generated DCM pixel clock, the block outputs the 
correct synching controls to the video encoder, as well as the current pixel values. The 
musical output is routed back to the Input block, where the sampling module simply 
outputs the copies the data to both PCM slots as it samples the current inputted data from 
the cd-player. 

 
 
2.1 Video Input, & Musical Input/Output: Overview 
 
 The musical sculpture system requires the input of two different sampled media. 
The first media is the sampled music incoming from the cd player, playing the musical 
piece selected by the user. The second input is sampled from a digital camera, containing 
a picture of the user’s movement with a led light pen. This data is analyzed by a block 
that outputs a pixel location to the FFT filter block. After sampling, the musical data is 
outputted to the FFT block, where it is stored and then modified by a filter created by 
change in position of the user’s LED pen.  
 
2.1.1 Musical Input/Output 
 
 The whole of the audio data, both input and output, is handled by the Audio 
modulus within the Input block of the system. The Audio module, interacts with the 
LM4550 chipset, and ac97codec, allowing the sampling of an analog signal, the output of 
a digital signal, the change in gain for all of all of these signals, as well as the volume of 
the sampled/outputted channel. 
 
2.1.1 Understanding the Audio Codec 
 
 The largest part of the work in this particular module’s construction was the 
comprehension of how to correctly interact with the ac97 audio codec.  

The codec works on a serial input/output (named ac97_sdata_in/ac97_sdata_out 
respectively in the labkit) to and from each of the data ports. This data is divided into 
frames. Each frame is constructed of 256 ticks of the ac97 bit clock, which is generated 
by the chip. Each frame is divided into 13 slots, the first slot being the ‘tag’, or slot 0, for 
the rest of the frame, and indicates to the chipset which bits of the remaining slots will 
contain valid data. To indicate the beginning of a frame, the user has to generate a synch 
signal – a signal that has to go high for all 16 bits of the tag slot, and go low for the rest 
of the frame. Any synch signal that goes high again before the frame ends will be ignored 
by the chip. 
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Each slot pertains to a different part of the whole sampling and outputting data 
cycle. The first two slots are where the user can change registered values in the codec. 
The first slot after the tag, pertains to the command address, or address of the register that 
the user wants to write to/read from. These registers can control the sampling rate of the 
ADC, the output rate of the DAC, which channels are ignored during sampling or output, 
and which are amplified or muted. All of these registers and their values can be found on 
page 16 of the LM4550 datasheet, along with their default values. These values are 
referred to as the command data, and are sent to the chip in the first 18 bits of the second 
slot after the tag. 

The actual data sampled data is provided from the chipset on the ac27_sdata_in 
line, during the 3rd and 4th slots. This is the data that will be outputted to the rest of the 
system for use in filtering and video display. 
 
2.1.1.2 Sampling with the Audio Codec 
 

 
Fig. 2.1 

 To sample with the Audio codec, I modified code provided in the our 6.111 labkit 
test URL (http://www-mtl.mit.edu/Courses/6.111/labkit/verilog/004/avtest/doc/avtest.shtml) that was 
written by Nathan Ickes. I modified the code the drop the right recorded signal, since the 
FFT was only built to handle a mono value, as well as created an enable signal that 
pulsed high 2 clock cycles after the music data had been successfully latched, allowing 
the FFT block to know that the data was valid and ready to be examined and stored. 
  
2.1.1.3 Outputting with the Audio Codec 
 
 To output the Audio codec, I simply changed the above audio.v code to use the 
sampled the 16bit data provided to me by the FFT module and place it into the 
left_out_data which was written to the PCM slot every synched frame. The music data is 
latched on every enable of the output. This latching is arbitrary due to the continuous 
output of the FFT modulus. These 16 bits are obviously smaller than the 18 bits needed 
by the DAC, therefore they were simply padded with zeros at the end, ensuring that the 
16 bits remained the most significant to be read correctly. Otherwise the data was left. 
Also, future modifications that did not complete during this simplified run – included 
modification to the sampling time – up-sampling and down-sampling as indicated by the 
user. As the output would be constant, this would then slow down, or speed up the music 
respectively.  
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2.1.2.1 Modifying the Amplitude 
 
 Also, along with doing the musical sampling of the system, the audio block is also 
what handles the output of the filtered music. This is also the block which handles the 
‘amplification’ of the system. In our primitive system, the change horizontal change was 
bound to the filter modification, and the vertical change was bound to the amplification. 
Therefore, with an upward movement, the user increases the amplification, which here 
manifests simply as the volume of the music. To implement this, a simple modulus takes 
the inputted vertical location, and calculates whether the current location is greater than 
or less than the last value sampled. If it’s greater, it sends out an increase_volume pulse, 
otherwise it sends out a decrease_volume pulse. These pulses are taken in by the vol_up 
and vol_down modules written into the avtest.v code, again written by Nathan Ickes. 
 
2.2.1 Video Input 
  
 The video input was to be provided by a light pen in front of a camera. Due to the 
fact that the Video codec transmits the pixel data in the form of luminence and 
chromiance, it seemed best to pick a bright light so that the color could be completely 
ignored. The pen light was supposed to be used on a darker background, allowing the 
great contrast in lumience to easily give away the light’s position. However, sadly due to 
time constraints and some hardware problems – this particular module never came to 
fruition. Instead, a fake module for the position was used, relying on user input of pressed 
buttons. 
 
2.2.2 Sampling the Video 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.2.1  
Since the incoming decoded data stream used a series of horizontal and vertical 

synchs to indicate the pixel position, the plan was to use a modulus to strip the data from 
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the pixels as well as the synchs, and simply send along the lumience value of the pixel, as 
well as a pulse for each time that the horizontal synch and the vertical synch changed. 
Thus, the analyzer would simply have to use a simple counter for the two synchs, and a 
test before outputting a vertical and horizontal position as indicated by the counters. 
  
2.2.3 Analyzing the Video Samples 
 
 The plan to analyze the video data was relatively simple. Using the synch pulses 
inputted from previous module, the analyzer was to create a counter that would check the 
current lumience value against a threshold value of lumience. If the current value checked 
out against it, and so did the next 5 horizontal values (to ensure that 
the value was not simply noise), then the mid point between those 
five would be the position values outputted. However, to account for 
some noise, this value was to be outputted to the FFT as only a 6 bit 
value, both the vertical and horizontal going from -31 to 32 despite 
the actual camera’s resolution of 640 by 320. Thus the pixel 
detection could waver a bit, but still transmit a relatively correct 
value. 
 
2.3 Debugging 
 
 Debugging, in most cases – consisted of trial and error results with the 
programmed labkit. For the audio inputs and outputs, I made some repeat inputs and 
continued to modify the code until I finally had something that was outputting sound on 
the headphones. Otherwise, I knew that there was a bug and that it did not work. As far as 
the video – because of the problems, there was very little debugging. Only a small 
module for the actual analyzation after the stripper, exists.  
 Sadly, however, while seemingly correct on their own, intertwining both eh FFT 
and the audio did not work as planned. Attempts at debugging produced mostly noise, 
and we are under the impression at the current moment that it’s mostly due to a sampling 
rate that creates a problem with the audio storage, thus destroying all further attempts at 
filtering.   
 
 
3.1 Audio Input Modification in Frequency Space : Overview 

 
The user can select four different filters through flipping two switches. Once a filter is 

selected, the filter cutoff frequency changes with the change in the position of the video 
input. For example, if the user selects a low pass filter, he can increases the coordinate in 
x direction and thus incorporating higher and higher frequencies of the music. If the 
music is sung by a female voice, the voice will sounds like a male’s at the beginning, and 
will increasingly sounds like the original female voice at the end. Similarly, selecting a 
high pass filter will make a male’s voice sounds like a child’s or a female’s voice. By 
decreasing the coordinate of x, the voice will increasingly sounds like a male’s. The all 
pass filter does not alter the frequency of the music.  
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The band pass filter can help detect pitch and harmonics. The user can begin by 
shifting the coordinate of x, which shifts the position of the band pass filter with some 
width in the frequency space. Once the user thinks that he detects a pitch or a harmonics 
of an instrument, he can resolve the pitch or the harmonics better by altering the width of 
the band pass filter by switching a “y enable” signal on. Then he can increase the width 
by increasing the coordinate of y, and decrease the width by decreasing the width of y. 
The decreasing in y is “finer” than increasing in y, because the filter width changes are 
bigger with an increment in y than a decrement in y. In this way, the user can search for a 
pitch of a human voice or a harmonic of an instrument, course-tune and then fine-tune to 
hear it.   
 
3.1.1 Matlab 
 

Matlab simulations are used to determine the parameters of the filter. The audio 
sampling rate was found to be optimized around 46kHz. The FFT transformation length 
N is found to produce quality music with a sampling width as low as 1000. Based on the 
simulation, the audio input is sampled and written to a RAM at a rate of 48 kHz (every 
563 clock cycle). N is chosen to be 4095 to provide the best resolution. N sets the filter 
range and the transformation length of the FFT module.   
 
3.1.2 External Inputs 
 

External inputs includes Button_enter and the 2 most significant bits of switch (8-bit). 
Pushing button_enter resets the filter system. The audio input, data_audio_in, and video 
inputs, x and y, are sequentially passed into the system.  
 
3.1.3 Synchronizer 
 
Input: Button_enter, switch 
Output: reset, syn_switch (2-bit) 
 

Synchronizer registers and synchronizes the external inputs Button_enter and switch. 
Clock_27mhz and reset (synchronized Button_enter) are global inputs. The two most 
significant bit of the switch is registered in syn_switch, which selects filter as shown in 
the table below.  
 

All Pass Low Pass High Pass Band Pass 
00 01 10 11 

 
 
3.2 Audio Input 
 
3.2.1 Control_rom_audio 
 
Inputs: dina_audio_in, enable 
Outputs: wea_audio, ena_audio, enb_audio, dina_audio, addra_audio, addrb_audio 
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The audio input is stored in a 2-port RAM. The writing port writes the audio input, 

dina_audio_in, whenever enable signal is high. The writing stage occurs at every 563 
clock cycle. It writes incrementally, begin with address 0 (addra_audio), and takes 3 
clock cycles to complete an address. The reading port reads 4095 addresses 
(addrb_audio), and outputs the oldest to the newest data (dina_audio). When an address is 
being written to, the reading stage halts until the completion of the writing stage. 
Afterwards it continues reading. During this time, 7-8 writing stages may occur. 4000 
oldest audio data will be read, which provides enough samples to the FFT. 
 
3.2.2 Rom_audio 
Inputs: wea_audio, ena_audio, enb_audio, dina_audio, addra_audio, addrb_audio 
Outputs: doutb_audio 
 

This module is a 2-port memory element generated by Coregen. Port A writes the 
data bits dina_audio to RAM through the address port addra_audio. Port B reads the data 
bits doutb_audio from RAM through the address port addrb_audio. The writing and 
reading stages are set by wea_audio, ena_audio, enb_audio as in  Lab 3. The two stages 
cannot occur at the same time. The writing stage and reading stages are controlled by 
Control_rom_audio. Rom_audio outputs doutb_audio to FFT_forward module.  
 
 
3.3   Filter Storage 
 
3.3.1 Camera_enable 
 

This module generates the signal xy_enable. The signal pulses 1 at every 20000 clock 
cycle. The period of the pulse is chosen long enough such that the user, who controls x 
and y video input, would not be able to change the filter coefficients too fast.      
 
3.3.2 Buffer  
 
Input: x, y 
Ouput: delta_x, delta_y, switch, xy_enable 
 

This module detects changes to the video inputs, x and y. X labels the horizontal axis 
of the video input, and y labels the vertical axis of the input. The video input is divided 
into a 64 x 32 grid, centered on (0,0). X ranges from -32 to 32, and y ranges from -16 to 
16. Their values are expressed in twos-complement, and registered by the Buffer through 
x_earlier and y_earlier. Whenever xy_enable is 1, x_ealier and y_earlier are updated to 
x_later and y_later, while x and y are registered in x_later and y_later. The buffer 
calculates the differences between the earlier values and later values as in Lab 3, and 
stores the change in delta_x and delta_y as shown in the table below.  
 

No Change Positive Change Negative Change 
00/11 01 10 
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3.3.3 Read_rom  
 
Input: wea, edone 
Output: enb, addrb 
 

This module inputs wea and edone. It controls the reading stage of the RAM, 
Rom_filter. It may read the Rom_filter when wea is 0, that is, when 
Write_rom_filter_final is not writing. Reading begins when FFT_forward finishes one 
cycle of fast fourier transform by pulsing edone. Reading increments from address 0 to 
address 4095, and repeats until wea is set to 1.  
 
3.3.4 Write_rom l 
 
Input: delta_x, xy_enable, switch 
Output: wea, ena, dina, addra 
 

This module inputs delta_x, switch, and xy_enable. It stores and outputs the cutoff 
frequency addra of the filter coefficients. The filter is selected by syn_switch. When reset 
becomes 0, the module initiates the cutoff frequency of the filter coefficients by writing 
to all addresses either 4’b1111 or 0. The variable, write_count, increments from 
addresses 0 to 4095, and sets the cutoff frequency addra as specified in the table. At every  
xy_enable, the module changes addra by +128 or -128. The counting is kept track of by 
cam_count. When cam_count counts to 128, addra is set to the new cutoff frequency. If 
addra is near the maximum and minimum value 0 or 4095, further decrements or 
increments set it to 0 or 4095 respectively. Wea and ena are set to 0 until xy_enable 
pulses 1.  
 
 

Name # of Bits Description 
reset  = 0;    Initiates addra by setting write_ena = 1 for 4095 clock cycles 
xy_enable  = 1;    Changes cutoff frequency by setting wea, ena = 1 
syn_switch  Filter selection: 

= 01;    Low pass 
= 10;    High pass  
= 00;    All pass  
 

delta_x  = 01;    Increasing cutoff frequency 
= 10;    Decreasing cutoff frequency 
= 00;    No change 
 

addra 12 Cut off frequency    
write_count 13 Low pass:  

< 512;    Initiate cutoff frequency to 512, dina = 4’b1111 
> 512;    dina = 0  
High pass: 
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< 512;    Initiate cutoff frequency to 512, dina = 0 
> 512;    dina = 4’b1111 
All pass:  
= 4095;    Initiate all pass filter cutoff frequency, dina = 4’b1111 
 

write_ena 1 = 1;  Initiates addra by writing to all addresses 
cam_count 8 < 128;   Changes addra by +128 or -128    
wea 1 = 1;   Write enable 
ena 1 = 1;    Port enable 
dina 4 = 4’b1111 or 0;    Filter coefficients 

 
 
 
3.3.5 Rom_filter 
 
Inputs: wea, ena, dina, addra, enb 
Outputs: addrb, doutb 
 
This module is a 2-port memory element generated by Coregen. Port A writes the data 
bits dina to RAM through address port addra. Port B reads the data bits doutb from RAM 
through address port addrb. Writing and reading stages are set by wea(write enable), ena 
(port a enable), enb (port b enable) as in Lab3 and cannot occur at the same time. The 
writing stage is controlled by Write_rom module, and the reading stage is controlled by 
Read_rom module.  
  
 
3.4 Fast Four Transform 
 
3.4.1 FFT 
 
Relevant inputs: doutb_audio, xn_re, nfft_we, fwd_inv, fwd_inv_we, scale_sch_we, start 
Relevant outputs: xk_re, xk_index, edone, done. 
 

This module is generated by Coregen. The transformation length is set to 4096. Upon 
reset, the module continuously outputs the FFT of the input data. The reset signals are  
nfft_we, fwd_inv, fwd_inv_we, scale_sch_we, and start. They initiates the module and  
remain constant throughout the computation. Scale_sch_we is set to 10’b1010101011 by 
the top module to avoid data overflow. When done is 1, a new set of computation begins 
at the next clock. The address of the input, xn_index, and the address of the outputs, 
xk_re, increment in sync. Since the audio output do not have imaginary components, the 
input xn_im is set to 0 by the top module. Edone precedes done by 1 clock cycle.  

The timing diagram of FFT is shown in figure below. 
 
 
3.4.2     FFT_forward and FFT_inverse 
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Two instances of the FFT module is generated. They are used to compute forward FFT 
(fwd_inv = 1) and inverse FFT (fwd_inv = 0).  
 

FFT_forward 
 

Relevant inputs: doutb_audio, xn_re, nfft_we, fwd_inv_we, scale_sch_we, start 
Relevant outputs: xk_re, xk_index, edone, done. 
 

This module computes the forward FFT. It receives the audio input doutb_audio from 
Rom_audio module. It continuously outputs the FFT of the input, xk_re, to MAC 
module. When it finishes one cycle of FFT, it pulses edone and done1. Read_rom then 
starts reading from addrb 0 to addrb 4095 repeatedly as described in its module 
description.  
 

FFT_inverse 
 
Relevant inputs: inv_xn_re, inv_nfft_we, inv_fwd_inv_we, inv_scale_sch_we, inv_start 
Relevant outputs: out_xk_re, out_xk_index. 
 
This module computes the inverse FFT. It receives the filtered audio data, inv_xn_re, 
from MAC module and computes their inverse FFT, out_xk_re, to video output. Upon 
reset, its inputs, inv_xn_re, inv_nfft_we, inv_fwd_inv_we, inv_scale_sch_we, inv_start, 
are set by the MAC module in the same way as FFT_forward. 

 
 
3.4.3 MAC  
 
Inputs: delta_x, delta_y, xy_enable, xk_re, xk_index, done, switch 
Outputs: inv_xn_re, inv_xn_im(= 0), inv_nfft_we, inv_fwd_inv_we, inv_scale_sch_we, 
inv_start 
 

This module initiates FFT_inverse the same way that FFT_forward is initiated. Upon 
reset, it sets the values of inv_nfft_we, inv_fwd_inv_we, inv_scale_sch_we, and 
inv_start. Inv_xn_im was set to 0 by Rom_audio. MAC module’s main purpose is to 
computes the filtered version of the audio input, inv_xn_re.  

The module begins one cycle of computation when done is 1. It multiplies the FFT of 
the audio input, xk_re, with the filter coefficients. When computing low, band, and all 
pass filters, the module sign-extends doutb to 16-bits. Starting from address 0, it 
multiplies xk_re and doutb, the filter coefficients from Rom_filter.  

To compute the filter coefficients of the bandpass filter, MAC modules generates the 
bandpass filter coefficients by storing the cutoff frequency, which ranges from 0 to 4095, 
in the registers a and b. The width of the bandpass filter is initiated upon reset to 64. The 
width ranges from 4 to 512. In this range, it can increase by steps of 28, or decrease by 
steps of 4. In this way, it is easier to search for pitches and harmonics using a bandpass 
filter. At every xy_enable signal, when y_enable is 0, MAC module shifts the position of 
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a and b according to the value of delta_x. When y_enable is 1, the module updates the 
width of a and b according to the value of delta_y.  
 
  

Name  # of bits Description  
syn_switch  2  Filter selection: 

= 01;    Low pass 
= 10;    High pass  
= 00;    All pass  
= 11;    Bandpass 
 

done 1 = 1;     Register the cutoff frequencies every 4096 clock cycles  
band_low, band_high 
 

xy_enable 1 = 1;     Updates the cutoff frequencies a, b every 20000 clock cycles
 

band_low 
band_high 
 

12 band_low = a 
band_high = b    

y_enable 1 =1;     Enable shifting operation      
=0;     Expansion/Contraction operation 
 

delta_x 2 Shifting  
= 01;    Shift a, b by +64 (require b < 4032) 
= 10;    Shift a, b by -64 (require a > 64) 
= 00;    No change 
 

delta_y 2 Expansion/Contraction  
= 01;    Expand b by +28 (require b < b_high) 
= 10;    Contracts b by -4 (requires b > b_low) 
= 00;    No change 
 

b_low 
b_high 
 

 12 b_low = a + 4; 
b_high = a + 484; 

doutb 1 = 1;   Write enable 
a 1 = 1;    Port enable 
b 4 = 4’b111 or 0;    Filter coefficients 

 
3.5 Debugging 

The primarily way of debugging the filter part of the circuit is through Altera 
simulation, Modelsim simulation, and the logic analyzer. Altera and modelsim simulation 
helps to verify that each individual module works. Modelsim simulation verifies that the 
RAM generated by Coregen works. Since Modelsim cannot simulate FFT and inverse 
FFT, the logic analyzer is used to verify their correct operation.  
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A comprehensive testing through Altera simulation verified that individual modules 
work. Modelsim simulation verified that modules are correctly writing and reading to the 
addresses of the RAM that stores filter coefficients. Beside Modelsim simulation, the 
logic analyzer also verified that the RAM that stored the filter coefficient is correctly 
written and read to. Separately, the logic analyzer verified that given impulse responses 
of varying periods and constant responses, at each stage of the time to frequency and 
frequency to time conversion, the modules FFT_forward, MAC, FFT_inverse gives the 
correct result. All the filters, all pass, high pass, low pass, and band pass are verified to 
produce the correct responses given an impulse or a constant. 

The only tested samples are impulse and frequency responses. When an audio input, a 
music file, is tested, only clipping sounds are heard when the all pass filter is selected. 
This originates most likely in that the resulting audio output contains only some, but not 
all, of the frequencies. This may result, but unlikely, from that the least 2 significant bit 
of the audio input are thrown away. Switching to high pass filter results in no sounds 
being heard. Switching to low pass filter results in quieter clipping sound. Switching to 
low pass filter produce similar clipping sound as the low pass. 

The only tested samples are impulse and frequency responses. When an audio input, a 
music file, is tested, only clipping sounds are heard when the all pass filter is selected. 
This originates most likely in that the resulting audio output contains only some, but not 
all, of the frequencies. This may result, but unlikely, from that the least 2 significant bit 
of the audio input are thrown away. Switching to high pass filter results in no sounds 
being heard. Switching to low pass filter results in quieter clipping sound. Switching to 
low pass filter produce similar clipping sound as the low pass. 

The failure to reproduce the audio output may originate from several sources. One 
source is that there are many parameters in the filter modules that can change, which can 
greatly enhance or reduce the quality of the music. One such change is the FFT 
transformation size. Another change is the sampling rate of the input at 48kHz, and the 
reading rate of the audio input from the RAM, which result in a reduction of FFT 
transformation size (~4000). Another source is the conversion of the input from time to 
frequency domain, and then back to time domain. Since transformation length is limited 
and finite, the conversion is imperfect. It is observed that given a constant, an impulse of 
~10 clock cycle, instead of ~1 clock cycle, is generated. Recall that FFT divides the 
frequency space into 4095 bins at the rate of the 27mHz clock, each bin contains some 
range of the frequency of the audio signal. It is most likely that, some range of the 
frequency of the audio input may be distorted or disregarded.  

 
 
 
4.1  Video Output 
 
 The musical sculpture system also has displays the music on a monitor, before 
and after it is filtered, along with the filter.  The music is displayed in the time domain 
and while the filter is displayed in the frequency domain.  These outputs allow the user to 
watch how their actions are affecting the filter while they move in front of the camera.  
The filter switches allow the user to choose which type of filtering they would like to 
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perform and the record button allows the user to compare the original music to the 
filtered version at any point.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Video Display   
 
 The music waveforms on the display are updated every time the system is reset or 
every time the record button is pushed.  Ideally it would be possible to have the music 
waveforms scroll across the screen.  However, down-sampling the 48-khz music outputs 
to the point where it is meaningful to the naked eye renders waveforms that do not even 
approximate the originals.  Therefore, the music waveforms are generated only when 
requested by the user.  Still, the music waveforms are not precisely those generated by 
the convolution because of the sampling that takes place and because there are 2^16 -1 
possible amplitudes for 16-bit music cannot have an individual value with 800x600 VGA 
output.  
 
 The filter is updated at the screen refresh rate, 60 Hz. The filter type is determined 
by the user-controlled switches.  Unfortunately, due to different clock speeds used in 
different portions of the project and the type of convolution we used, the filter is simply 
an approximation of the actual filter based upon the change in position of the LIGHT and 
the boundaries of the band-pass filter.  Chen implemented four different filters: the all-
pass, the band-pass, the low-pass, and the high-pass. The correct type of filter is always 
displayed, along with the relative position of the filter.  The all-pass filter is simply a 
straight line with value one.  The low and high pass filters are be extended or shortened 
as the actual filter is altered.  Lastly, the position of the band-pass filter changes along 
with the actual filter.  Since we attempted to implement ideal filters and did not change 
the amplitude of the music, the possible filter values are zero and one.   
 
 
 
 
 
 
    2’b00               2’b11                 2’b01                      2’b10 
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Figure 4.2  Filters and Switches 
 
 There are two buttons and two switches that determine the VGA signals.  I chose 
to implement a record button that captures new music for display instead of displaying a 
new waveform every three to five seconds.  The main advantage is the record button 
allows the person molding the filter to capture new waveforms at whatever frequency is 
desired.  There is also a reset button that resets the system, including the video.  Lastly, 
the two switches determine which type of filter is being used.  
 
 
 
 
4.2  Control signals and RGB 
 
  The first step in displaying video using VGA is to create vertical and horizontal 
sync signals.  Additionally, a blanking signal and a sync signal are necessary for the 
ADV7125 DAC in the lab kit that supplies the RGB values for the VGA output.  I chose 
to operate the monitor at 800x600 pixels and with a 50 Mhz pixel clock.  I used a Digital 
Clock Manager (DCM) to generate the 50 Mhz pixel clock from the 27 Mhz labkit clock.  
The pixel clock is used for every other module in the video portion.  Next, I split the 
control signals into two modules:  the horizontal control signals and the vertical control 
signals.  The first module creates the horizontal sync and sets the horizontal blanking 
signal low during horizontal sync and the front porch and back porch of the horizontal 
sync.  The second module creates the vertical sync and outputs a signal indicating 
blanking should be low during the vertical sync and its front porch and back porch.  
Additionally, both the horizontal sync and the vertical sync should delayed by two clock 
cycles to account for the RGB delay from the ADV7125.  The timing values for a 
800x600 display with a 50 Mhz pixel clock are shown in Table 4.1. 
 
 Active Video Front Porch Sync (active low) Back Porch 
Horizontal (Pixels) 800 56 120 64 
Vertical (Lines) 600 37 6 23 

Table 4.1  VGA timing specifications. 
 
 I used a finite state machine for both the horizontal and vertical sync generators.  
The horizontal sync generator is sensitive to the pixel clock, and simply increments a 
counter as it transitions through the active video, front porch, horizontal sync, and back 
porch states.  It has a synchronous reset and generates a pulse (line_finished) each time it 
finishes a line.  The horizontal sync generator’s state diagram is shown in Figure 4.3. 
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   Horizontal Back Porch 

         Cnt  <= cnt + 1; 
          Blanking <= 0;   
          Horizontal_sync <= 1;   
          Line_finished <= 1;  
 
 
 
 
 
 
 
        Horizontal Sync   
        cnt <= cnt + 1; 
        Blanking <=  0;   
         horizontal_sync <= 0; 
         Line_finished <= 0;   
   

 
Figure 4.3  State Transition Diagram for the Horizontal Sync 
 
Similarly, the vertical sync generator transitions through active video, front porch, 
vertical sync, and back porch states, but it is sensitive to reset and line_finished.  The 
vertical counter controls which state the module is in and is also an output.  The module 
also generates a signal (vertical_finished) when it is finished with each vertical frame.  
The state transition diagram is shown in Figure 4.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 State Transition Diagram for the Vertical Sync 

Horizontal Video Active 
Cnt <= cnt + 1; 
Blanking <= 1; 
Horizontal_sync <= 1; 
Line_finished <= 0; 

Horizontal Front Porch 
Cnt <= cnt + 1; 
Blanking <= 0; 
Horizontal_sync <= 1; 
Line_finished <= 0; 

Vertical Video Active 
Cnt <= cnt + 1; 
Blanking <= 1; 
vertical_sync <= 1; 
frame_finished <= 0; 

Vertical Front Porch 
Cnt <= cnt + 1; 
Blanking <= 0; 
vertical_sync <= 1; 
frame_finished <= 0; 

Vertical Back Porch 
Cnt <= cnt + 1; 
Blanking <= 0; 
Vertical_sync <= 1; 
Frame_finished <= 1; 

Vertical Sync 
Cnt <= cnt + 1; 
Blanking <= 0; 
Vertical_sync <= 0; 
Frame_finished <= 0; 
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The ADV7125 takes three 8-bit color values (RGB) as well as the pixel clock, a blanking 
signal, and a sync signal.  The horizontal and vertical sync signals are XOR’d together to 
create the sync signal sent to the ADV7125.  Lastly, the horizontal and vertical blanking 
signals are NOR’d and that signal is the blanking signal sent to the ADV7125.   
 
 
4.3  RGB Generation 
  
 The next stage was generating pixel values for the RBG signals.  I accomplished 
this by creating a module that generates the RAM control signals and the filter.  The 
RAM control module also generates signals that designate which part of the screen is 
currently being scanned.  There are two RAMs and they store the music.  Since they are 
constantly being written or read, yet another module (pick_ram) determines which ram 
values to pass on the pixel generator.  The block diagram showing the entire video system 
is in Figure 4.5.  The pixel clock and reset are global to everything but the DCM. 
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Figure 4.5  VGA Block Diagram 
 The RAM Control module takes the pixel clock and reset as inputs, along 
line_finished, vertical_finished, and the vertical count.   Not only does the RAM Control 
module generate the addresses and write enables for the music RAMs, it also generates 
signals (wave_on signals) that indicate which wave is being shown.  The RAM Control 
module also generates the filter from the input location (coordinates of the band-pass 
filter), the switches to choose a filter, and the change in the location of the LIGHT.  The 
RAM Control module also writes 800 16-bit properly spaced music samples to each 
RAM during idle states when prompted by the button record. 
  

The RAM Control module’s state machine alternates between being idle between 
waveforms and setting wave_on 1, 2, and 3 to have the right values as well as supplying 
the correct RAM addresses, and generating the filter.  When supplying RAM addresses, 
the module begins at 0, then increases to 799, at which point the RAM address resets 
itself to zero.  The RAM Control module then waits until line_finished has been asserted 
to restart incrementing the RAM addresses.  When the filter is to be displayed, the RAM 
Control module identifies which type of filter to display and displays that filter.  The low-
pass filter and the high-pass filter are extended by ones and zeros in response to changes 
in the coordinates of the LIGHT source.  The band-pass filter’s location varies according 
to the input location.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.6  RAM Control State Transition Diagram 

 
The outputs from the two RAMs, which were instantiated in the Xilinx Core 

Generator, are then fed to another module.  Using the wave_on signals allows the pick 
RAM module to identify which RAM’s outputs to pass as the ram_output to the Video 
Generator module.   The Video Generator module takes the ram_output signal as well as 
the filter signal and generates the RGB values for each pixel.  The Pixel Generator also 
takes the vertical count, line_finished, and all three wave_on signals as inputs.  If all of 
the wave_on signals are low, the video generator assigns the background color values to 
red, green, and blue.  If wave_on1 or wave_on3 are high, they correspond to the music 
before and after filtering.  The generator module compares the value of the seven most 
significant digits from the RAM to a reducing value corresponding to the position within 

 

 

Waiting and 
Writing 

Display Music 

Waiting No. 2 
Display Filter 

Waiting No. 3 

Display Music 
After Filtering 
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the region occupied by the waveform.  If they are equal, the color of the line are assigned 
to RGB.  Otherwise, the background color is assigned.   

 
The generator module determines the pixel values for the filter region when 

wave_on2  is high similarly.  Each bit of the filter is retained for four clock cycles, then 
shifted to the back of the filter.   This round robin approach allows the module to check 
for ones at one height in the display and for zeroes at another.  Additionally, since the 
filters are ideal (vertical sides), the current first bit of the filter and the second bit are 
compared.  If they are not equal, then the RBG values are set to the line level instead of 
the background color.  Additionally, to prevent the filter from continuing to shift during 
the horizontal sync periods, a clock increments to 800, at which point the shifting stops 
until the next line_finished signal is asserted.   
 
 
4.4  Design, Trade-Offs and Testing 

 
I began the design process by creating the modules that generate the control 

signals.  However, in the first implementation, I included code that generated RGB values 
in a pattern.  This allowed me to ensure that all the counters and the timing values are 
correct and that the delays from the ADV715 have been compensated for.   
 

The second part of the design and implementation process involved designing the 
display function for the music.  However, displaying music involved reading from the 
correct RAM and displaying the signal only on a specific part of the screen.  The next 
step involves identifying which pixels to change to something other than the background 
color.  After the display functions correctly, I had to devise a way to update the music 
RAMs when appropriate.  The original plan was to have music scroll across the screen.  
However, after calculating the possible frequencies and realizing that the music would 
either scroll so quickly it would be meaningless or the displayed music would have little 
relation to the actual music.  Therefore, I designed a system that updates the values in the 
RAMs every time the record button is pushed.  This allows the user to update the music 
being displayed as often or seldom as desired. 

 
The last major part of the video implementation was creating the correct filter 

based on inputs from the filtering portion of the lab as well as the switches that determine 
which filter is being used.  After the filter is created, it has to be displayed on the correct 
portion of the screen.  The next challenge was implementing another method of 
displaying the long vector instead of a 16-bit vector at every pixel.  Additionally, this had 
to be implemented so that it could be updated as the location of the LIGHT changes.   

 
Unfortunately, the output from the combination of the audio, camera, and 

convolution was not functional.  This caused some difficulties in debugging my section 
of the lab.  Since the RAM Control module is dependent on variables generated in the 
convolution section of the project, it is impossible for me to guarantee and fully check the 
functionality of my video implementation.  However, I have established that my video 
implementation does properly display static inputs for the music and that the filter is 
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indeed dependent on the switches.  The limited amount of testing I was able to do 
indicates that the filter also varies according to delta_x and the location of the filter.   
 
 
5.1 Conclusion 
  
 Sadly, our project did not completely come to fruition. Although most of the parts 
seemed to work on their own, knitting them together in the end produced errors and an 
incomplete project. If we had had more time, I believe that it would have been a greater 
success than it was. Regardless, we all learned a lot, and enjoyed the whole creative 
process. 
  
  


