
The RC Circuit
6.111 Final Project Proposal: First Draft

Gian Delfin, Vivian Huang, Luis Terrones-Verastegui

1. Overview

The RC Circuit is a maze-solving system that takes in a user-defined maze and quickly

displays a path through the maze. The user can make a maze by laying out paper “walls” in front
of the camera setup. From here, we capture an image of the maze and process it using the
Nexys4 in order to determine where the walls of the map are. Next, we use the Nexys4 to run the
processed image through a maze-solving algorithm in order to generate a solution to the maze.
Finally, we project the maze and an image of a RC car following the solved path on top of the
input maze. Ideally, we do this entire process as quickly as possible in order to approach
real-time maze-solving/obstacle detection.

2. Goals

2.1. The minimum goal is to send an image of the maze from the camera to the FPGA,

process the image, and determine the correct path through the maze using a
maze-solving algorithm.

2.2. The next goal is to project onto the ground an image of a small car traversing
through the correct path determined by the maze-solving algorithm.

2.3. The stretch goal is to perform real-time maze-solving as the user changes the
physical walls of the maze.

3. Overall Block Diagram

4. Main Components

4.1. Nexys 4 DDR
4.2. OV7670 Camera Sensor
4.3. Overhead Projector
4.4. Tripod (to support camera and overhead projector)

5. Modules

5.1. Camera

The OV7670 camera sensor will capture images of the maze. The FPGA will
configure the control registers of the camera via I2C protocol and receive pixel
bytes serially. These pixels will be represented as a 2D array in the FPGA and
will be processed in the next module.

5.2. Image Processing
We will perform image segmentation on the maze and transform the 2D array of
pixel values into a 2D array of 1’s and 0’s. The 0’s will represent the presence of
a wall, while the 1’s will represent the absence of a wall. This 2D binary array is
passed to the maze solving algorithm.

5.3. Maze Solving Algorithm
There are several different maze solving algorithms. One common approach is to
use the wall follower detailed below; this will be the first method that we will
attempt. However, because the computer has knowledge of the entire maze in this
case, we will also attempt to implement a shortest-path algorithm to determine the
optimal path from start to finish.

● Wall Following
If a solution exists, this method works by moving the traveler along one
wall of the maze until it reaches an exit; if the maze is unsolvable, the
traveler will return to the entrance having traveled along every corridor
next to that connected section of walls at least once.

● Lee Algorithm
This is based on the breadth-first search algorithm and would operate on
the 2D binary array representing the maze. The pixels would be treated as
nodes in an undirected graph and there would exist edges between
neighboring pixels. For example, the pixel at location (i, j) would have
neighbors (i + 1, j), (i - 1, j), (i, j - 1) and (i, j + 1). This algorithm would
find an optimal solution to the maze if one exists, but is more
computationally expensive and may require a lot of memory. We will
implement this algorithm after the Wall Following one.

6. Potential Performance and Hardware Limitations:

● The OV7670 camera has a 640x480 resolution that could limit the resolution of
the maze.

● The Nexys 4 DDR FGPA’s BRAM write depth is limited to 1048576, which is
insufficient to support 1080p resolution (1920x1080 = 2073600), so the maze
resolution is also limited by the FPGA board.

● Although popular, the Lee Algorithm is computationally expensive. For single
layer maze routing, expansion is O(d​2​) for a connection of distance d, while
cleanup is O(N​2​) for an NxN grid. If we use this algorithm, hardware can
accelerate this process, but we will have to choose an approach which can be
implemented on the FPGA.

