
Gim’s Labyrinth
Gian Delfin, Vivian Huang, Luis Terrones-Verastegui

Overview

● Maze Setup

Overview

● Maze Setup

● Image Processing

Overview

● Maze Setup

● Image Processing

● Path Solving

Overview

● Maze Setup

● Image Processing

● Path Solving

● Projection

Overview

● Maze Setup

● Image Processing

● Path Solving

● Projection

● Stretch Goal: Real-

Time Maze

Manipulation

Block Diagram

Modules

1. Image Processing
● Interface with OV7670
● Convert 16 bit RGB image to 2D binary array

● Process, then pass binary array to maze solving algorithm

RGB to HSV
● 16 bit RGB pixels
● Sample twice from OV7670 to

obtain one pixel

Threshold
● HSV easier to threshold
● Slice cylinder to get wall colors

Wall = 0

No Wall = 1

Binary Image Smoothing
● Necessary to smooth/denoise binary

image
● Erosion/Dilation
● Median Filter
● Graph Cuts

2a. Maze Solving: Wall Following Algorithm

● Guaranteed not to get

lost

● No solution? Returns

to entrance

● Stuck if start at isolated

segment

2b. Maze Solving Algorithm: Lee’s Algorithm

● BFS exploration of maze

● Expand one move at a time

● Guaranteed shortest path

3. Path Projection

● Represent path as deltax & deltay values

● Write path found to BRAM

● Draw path by following these deltas from start

to finish in a cycle

BRAM
4x76800

4’b0001

4’b0100

.

.

.

4’b1001

Possible Issues
● Memory

○ Image resolution : 320 x 240 pixels
○ Binary image requires 76800 bits of RAM
○ Maze solver path requires 4 bits for each displacement.

Could get large for complicated paths

● Image noise
○ Misclassified walls
○ Erosion/Dilation may eliminate thin walls

Timeline
Week 1 - Image processing pipeline (RGB -> HSV, etc.)

Week 2: - Project a predetermined path
- Maze solving algorithm

Week 3 - Refine maze solving algorithm
- Construct camera + projector mount
- Put together setup

Week 4 - Debugging + Testing + Final Touches

