

Beep Boop 9000

Project Goals

The basic function of our suite will be an audio looper. The GUI will allow the
user to record up to 8 different tracks of approximately 30 seconds in length. The user
can then choose to play any subset of the tracks that have been recorded while either just
listening or playing additional sound over the top of the playback.

The learning synthesizer will work by listening to a note from an instrument and
using Fourier analysis to extract coefficients corresponding to each of the relevant
frequencies. The user can save different sounds and then select which instrument to
playback each track as. The user can also select the instrument to use for live playback.

A stretch goal will be to add a drum kit feature to the system. This could come in
the form of several preloaded drum tracks that allow the user to select a genre and a
tempo, or we could allow the user to craft his or her own drum beat. The latter option,
however, would likely require more extensive work on the GUI side of things.

The Main State Machine

This module will likely require some contribution from each of us, as it acts as a
bridge between the GUI and the data management sections of the project. The module
will take as inputs the track, action, name, and instrument from the GUI, and then pass
these through to the data management module. It will activate modules according to the
input from the GUI and keep track of the internal state of the system.

The GUI
 Tyler will design and implement a GUI for the project. The team has discussed
multiple basic functions that the GUI will possess, but it is likely that these may change
slightly or expand as it becomes more clear what the bounds of this project are and the
capabilities that are possible. The basic functionalities are: tracks, instruments, recording,
active playback, looping, and learning. There will be eight tracks on-screen that the user
will be able to interact with. The user can record to an individual track, mute a track
(playback includes all tracks that are not muted), select the instrument that the track will
sound like, name a track, and delete a track. Tracks allow the user to have eight possible
layers that they can playback together to create a song but are all edited separately.
Tracks combined with fixed-length loops may also make data storage easier since we can
assign constant locations for each track. How the team implements different instruments

is addressed further below, but for the GUI, there will be a selection for each track for the
desired instrument that the recorded notes will be played back through. Learning is the
process of listening to a new instrument, saving it, naming it, and allowing users to now
select it as one of the instruments for playback. This is also further addressed below.
There will be a learning button on screen (or perhaps mapped to a button) that will
provide instruction on what to do and when. Recording is exactly what it sounds like.
There will be instructions and a button on screen for recording too. As of now, there will
be a fixed recording window that the user can then delete or overwrite if they did not like
it, instead of recording for an unspecified amount of time and selecting a window of that
to keep. After recording to a track, the user will have the option of naming it, which will
be used as the name of the track. Looping (normal playback) will also have a button on
screen. Looping will loop all tracks that are not muted until the user pauses looping.
Active playback is a reach goal as of right now, but the team is somewhat confident that
it will make it into the final design. Active playback involves real-time transformation of
input sound into a chosen instrument. This mode will continue to be on until the user
selects to stop it. Most of the options will be accessed by using the buttons. Left, right,
up, and down will be used to move between options, and the center button will be used to
select or confirm an option. This will be sufficient for most actions the user needs to do,
but it may be necessary to also install a potentiometer knob or something similar to
address reach-goal actions like volume control or editing. Also, one interesting idea for
inputting text to name tracks and instruments is to use the switches to input values 0-25
for the 26 letters of the alphabet.

The Fourier Analysis

Brandon will primarily be working on this section of the project. The Fourier
analysis has two main functions. The first is to identify the fundamental frequency of the
note being played. This is used in the active conversion of instruments and track
recording as well as in the learning. In the active conversion and track recording, this is
the final step of the processing and the identified fundamental frequency and associated
intensity are passed to the synthesis stage or the storage manager respectively. The
second function is learning. The learning flow will produce a set of normalized
coefficients representing the timbre for the recorded instrument. In the learning flow, the
fundamental frequency and intensity are passed with the FFT data to the Learner module.
This module then extracts the coefficients of the harmonics of the given frequency from
the FFT data. The module normalizes these coefficients and sends them to the data
manager.

The FFT will be performed on data that has been passed through a low pass FIR
filter to limit aliasing. Because the information being extracted is going to be used to
produce new waveforms, the FFT frequency can be much lower than the sample rate.
This will allow vivado to create a more compact IP module saving resources. We will
start testing at an FFT frequency of 1kHz. If allowed by resource constraint, we believe
this frequency will be responsive enough to intensity changes and note changes in order
to faithfully reproduce dynamics and pitch.

The first version of the fundamental frequency finder will just be finding the
frequency with the largest amplitude. More sophisticated algorithms may be developed
and deployed if performance is unacceptable.

The Synthesizer

Matt will be handling this section of our project. The synthesizer will use the
sound characteristics extracted using harmonic analysis to convert a fundamental
frequency to the instrument or sound that the user has selected. One of the challenges lies
in determining the best way to reproduce the sound of an instrument as well as how
accurately we can reproduce the desired sound. We are thinking about using two possible
techniques for carrying out this task: a sine-wave lookup table and an inverse Fourier
transform. We will experiment with the two methods in order to determine which might
be easier to implement. Assuming that the Fourier analysis can be completed without
excessive delay, we are hoping to use an FFT followed by frequency coefficient scaling
and then an IFFT to convert the sound to the instrument of choice. However, there are a
couple of different challenges that we foresee in doing this. The main concern is the delay
time resulting from the FFT and IFFT, and another concern is whether this process will
allow us to reproduce sounds realistically.

The synthesizer side of the operation will consist of a few steps. The frequency
generator module will take in an input fundamental frequency, an amplitude
corresponding to the volume, and an instrument’s frequency mapping. Using the
instrument’s frequency coefficients, the module will add these frequencies in correct
proportion to the fundamental frequency in order to preserve the volume of the sound
while changing the character of the sound. This module will then output these new
frequency coefficients. We can test this module by feeding in some simple frequency
mappings along with a fundamental frequency and observing the frequency coefficients
that it outputs.

These modified frequency coefficients will then proceed to the IFFT IP module,
which will take these coefficients and produce a waveform in the form of samples. We

can take as many samples as we need from each resulting waveform in order to meet our
desired output frequency, which will probably be around 48 kHz. These samples will
then be passed through an FIR filter in order to smooth them before we output them. The
FIR filter should be relatively simple to add on here since we already implemented this in
lab 5a. We can test the IFFT module by feeding in frequency coefficients that correspond
to a relatively simple, known waveform and observing the output waveform as an analog
wave.

Now that we have filtered waveform data, we need to convert the output back to
analog. We can pass the output through a DAC in order to do so. This should be
relatively simple to set up using Vivado’s IP Catalog.

Data Management

Tyler will be the main contributor to this section of the project. In order to store
music data, it will definitely be necessary to use a larger data storage than is available on
the board. The plan is to use an SD card to store music and instrument data. Usually,
writing to larger, nonvolatile memory is very slow, relatively. So, it is possible we may
need to cache data in BRAM while we wait to read or write from the SD card. Either
way, as you can see from the block diagram, we will need a data management unit for
getting and setting data in its appropriate spot. Data will be sent into the unit along with
control signals like track number, instrument name, and read or write from the FSM.
Although we can hard code in addresses like the start of each track, there are variables,
like the number of instruments, that will require us to store extra information, like a map
of instrument names to memory addresses, which will require extra memory accesses in
order to execute. It is also likely that we will have to read data from memory in blocks of
some predetermined size, so we will have to process those blocks and we could possibly
cache the extra data from them to increase the overall speed of our memory accesses.
Since the specifics of reading and writing to memory are mostly internal to the data
management unit, it will require some state to remember such things as how far along in
reading a track it is. Another possible optimization we are thinking about is to store music
data at staggered addresses (i.e. every 8th address) to be more efficient with playback.

