
6.111 Final Project Proposal - J. Abel, J. McGuire
Quadcopter Camera Display

Table of Contents

Project description………………………………………………………………………….. 1

System Components……………………………………………………………………….. 3

Project Goals………………………………………………………………………………... 5

Block Diagram………………………………………………………………………………. 6

Project description:

We propose to construct a system that will take a video signal from a camera mounted to a
quadcopter and display it on a screen. An analog NTSC composite waveform will be transmitted
from the camera wirelessly on a 5.8 GHz carrier, received and extracted by an RX receiver chip,
and digitized using an NTSC decoder. The incoming pixel data will be transferred in YCrCb
colorspace and stored in a buffer in the external ZBT RAM chip until an entire frame has been
received, to account for the interlaced nature of NTSC video. Once the entire frame is in the
memory, the pixel data will be read in 3x3 chunks, addressed based on its location in the frame,
and sent to an image processing module. The image processing module will then apply a series
of filters to each chunk as toggled by the used, including a brightness level adjuster, an edge
highlighter, and a noise reducer. The processed pixels will then be sent to a VGA controller,
hence displayed the view from the camera on the screen.

The analog NTSC composite waveform will be digitized and processed using an ADV7185
NTSC decoder, which samples the waveform at 27 MHz with a bit depth of 10, resulting in a 30
bit data structure storing the data for each pixel in YCrCb space. Additionally, the NTSC
decoder can extract the video synchronization signals from the waveform, which are necessary
to later display the image on the VGA monitor. This 30 bit data input will be truncated to 18 bits
such that two pixel values can fit into one 36 bit memory word. A register will enable the storage
of the past value so that both two pixel values can be latched into a 36 bit register on every odd
numbered pixel clock count. The address translator module will coordinate the latching of this
register and send a ready pulse to the memory deconflicter module when a new word is
available. Additionally, a color bar generator module will be selectable by a switch to generate a
consistent image for testing purposes. Similar to the other input chain, this will generate pixel
values, locations, and an input clock. Note that the address translator latches out values on the
system clock so that synchronization with the memory deconflicter will be acheived.

The memory read logic operates on a two-by-three word buffer that allows for the storage of 12
pixel values. On every odd pixel clock, the buffer will advance, and on every even clock, the 3x3

1

pixel output frame will shift. In this manner, nine adjacent pixel values will be output at a time to
the convolutional processor. These scheme requires the reading of three word values from the
external memory for every two output pixels. Therefore, there are 10 clock cycles available in
this space to do three reads and the single write operation from the pixel input. The memory
deconfliction module will accept the three addresses from the output controller for each
two-pixel cycle serially and will therefore take priority for memory access. In the seven cycles
that occur between these accesses, the input word will be saved to memory. Delay registers will
be used to delay the latch outputs from the memory unit (which is delayed by two cycles) such
that the proper data value is placed into the proper register on the memory output buffer before
being latched into the 2x3 word buffer for output. The memory deconfliction module will use
read/write and trigger lines to control when reads and writes should occur and which values
should be multiplexed to the actual address lines.

Another feature of the input unit is the average and variance calculation, which will be
useful for establishing thresholds later on in the image processing. This operates off of a
two-frame average computation that receives pixel inputs. The difference between this
two-frame average and the current input pixel value will be averaged over an entire frame to
determine the variance for the current frame, which will be latched with the vertical sync pulse
such that it arrives at the output one frame delayed.

For initial tests, this video feed will be directly supplied to the decoded via a wired connection, to
ensure that a clean signal is entered into the system. However, to increase the applicability of
the system in the real world, this feed will be replaced by a wireless feed received from a
RunCam Owl Plus camera mounted to a quadcopter. This camera transmits the signal on an
AM-modulated 5.8 GHz carrier wave, which can be decoded using a RX5808 receiver with an
antenna attached to the video decoder.

As each pixel is received, its data will be truncated from 10 bits per channel to 6 bits per
channel and stored in a register on the FPGA’s ZBT SRAM chips. Since NTSC video signals are
interlaced, the entire frame will need to be stored in this buffer before processing can be applied
to the image, hence necessitating the external SRAM chips. Assuming that each frame will have
a resolution of 640x480 pixels, we expect that around 700kB of memory will be required to store
each frame. The system will contain two frame buffers; one to store the incoming pixels, and
one to store the outgoing pixels as they are transferred to the image processing modules. A flag
will be used to switch the roles of these two buffers between each frame, such that data does
not need to be transferred between two buffers. The outgoing data will be sent in 3x3 chunks of
pixels alongside Cartesian addressing information, which makes it easier to later apply
convolutional filters to the pixels.

Filters will be applied to each 3x3 chunk of pixels before they are sent to the VGA controller.
These filters will be toggled by the user using the switches on the FPGA. Since many of the
filters work by manipulating the Y channel of each pixel, filtering will occur in the YCrCb color
space. The following filters will be available to process the image

2

- An edge highlighting filter based on a 3x3 Sobel edge detection convolutional filter, which
will highlight the edges of obstacles in the frame to make them more visible to the user. This
filter will only act on the Y channel.

- Two brightness level adjustment filters will be added to increase the contrast in the image
when overexposed (e.g. in direct sunlight) or underexposed (e.g. in twilight). These filters
will work by remapping the values of the Y channel of each pixel, such that the distribution of
brightness levels for each pixel is more even. These two behaviors will be attached to two
different switches; the behavior that is chosen will be the switch that was most recently
switched on (i.e. the filter cannot increase and decrease brightness).

- A noise reduction filter, which will smooth the effect of noise due to errors in the signal
transmission, hence increasing the effective range of the system. The 3x3 pixel chunk will
be convolved with an approximated Gaussian mask, which has been modified such that all
values are factors of 2 to remove the need for floating point arithmetic. This mask will act on
all three channels of the pixel.

This processing must occur within one period of the VGA clock (the inverse of 12.588 MHz,
assuming a resolution of 640x480 pixels with a frame rate of 30 fps). Moreover, up to nine
hardware multipliers will be required to implement all of these filters. Once the selected filters
have been applied, the pixels will be converted from 18 bit YCrCb values to 18 bit RGB values
and sent to the VGA controller to be displayed on the screen.

Additionally, the displayed image will be overlaid with text indicating the total power of the video
signal. A second ADC will be used to sample the incoming NTSC waveform, and calculate the
overall power of the signal. This value will then be displayed as text sprites stored as ROMs in
the FPGA’s on-chip memory as overlays on the image. The user will be able to select the
position of this overlay from 6 locations on the edges of the screen using the buttons on the
FPGA. An FSM will be used to drive the logic controlling the position of this text overlay.

System Components:
The system architecture will consist of the following components:

NTSC Camera Data from the surroundings will be captured using an NTSC camera.
Initially we plan to use a wired camera, which directly sends an analog feed
to an NTSC decoder chip. Since this setup has minimal losses and requires
no additional circuitry, it is ideal for testing and demonstrating the
functionality of the rest of the system. However, we hope to eventually
replace this with a RunCam Owl Plus camera mounted to a quadcopter,
which transmits video data over a 5.8GHz AM modulated RF signal, which
will give our system greater real-world applicability.

ADV7185
NTSC Decoder

This chip converts the analog analog NTSC waveform into a digital
waveform that can be processed by the FPGA. Essentially the chip acts as

3

an ADC, sampling the video waveform from the camera at 27 MHz with a
bit depth of ten. Once digitized, the chip then extracts the pixel information
and outputs it as a 30 bit value in YCrCb color space. Additionally, the chip
is able to extract the HSync and VSync signals necessary to control the
timing of the video display.

RX5808 RF
Receiver with
Antenna

This chip will receive the RF signal from the camera and extract the NTSC
composite waveform off the 5.8 GHz carrier wave. The video signal wave
will then be fed into the NTSC decoder as if it were from a direct feed. The
signal would also be fed into an additional low-frequency ADC, which would
sample the signal to determine its overall power. For simplicity, we intend to
use a single antenna to receive the signal, however there is potential to
expand this to a multidirectional antenna array if time permits. This array
could be controlled using a switching matrix powered by logic from the
FPGA, and would give a stronger signal.

Labkit FPGA
with 4MB ZBT
SRAM

An FPGA will be used to perform all digital signal processing, as well as to
apply the filters to the resultant image. Since NTSC video signals are
interlaced, a frame buffer is needed to store complete frames for
processing using convolution filters. We expect to need to store up to 4
frames to perform the necessary processing, which requires around 2.5MB
of memory. Hence, we have chosen to use the older labkit FPGA, which
can be interfaced to two built-in ZBT SRAM chips, providing 4MB of
memory.

The user will interact with the system using the buttons and switches
present on the FPGA. The switches will be used to toggle between the
different filters, while the buttons will be used to select the location of the
data overlay on the screen. The labkit’s built-in VGA bus will be used to
connect the system to a monitor to display the images.

VGA Monitor A VGA monitor will be used to display the processed images from the
camera. To match the frame rate of the camera and resolution of the
camera, as well as to reduce the memory and clock speed requirements for
the video processing, the image will be displayed at 30 frames per second
with a resolution of 640x480 (since VGA by default uses 60 frames per
second, each generated frame will be displayed for two frame cycles).

4

Project Goals:

 Camera Signal Processing Image Processing

Core Video from an NTSC camera will be
received by the NTSC decoder via a
direct wired feed. The resultant pixel
data will be addressed and stored in
memory until an entire frame has
been received. Once the entire
frame is in memory, a flag will
allocate this buffer to be processed,
while new data will be added to a
second buffer. The outgoing pixel
data will then be sent to the video
processing module in 3x3 chunks
suitable for convolutional filtering.

The pixel data in YCrCb space will be
received from the SRAM as an addressed
3x3 chunk. The center pixel of each chunk
will be converted to RGB color space, and
sent to the VGA control module. This
module will take in this pixel data along
with its position, and generate the view
from the camera on the monitor.

Expected Decode video from NTSC wireless
feed, determine signal power
Instead of a wired feed, a video
signal will be received wirelessly
from a quadcopter-mounted camera.
An RX receiver chip will be used to
extract the signal from the carrier
wave, which will be sent to the same
NTSC decoder in the same manner
as the direct feed. Additionally, a
separate low-frequency ADC will be
used to sample the incoming signal
and determine its overall power.
This value will be sent to the VGA
controller and displayed as a text
overlay on the screen.

Before converting each pixel from YCrCb
to RGB, the system will apply a series of
filters to each chunk, which will be toggled
by switches on the FPGA. Depending on
the user’s preference, a brightness level
adjustment filter, a Sobel edge detection
filter, or a Gaussian noise reduction filter
will be applied. Since this processing
mostly operates on the Y channel of each
pixel, it will occur before the pixel is
converted to 18 bit RGB.
Additionally, a text overlay will be added
onto the frame indicating the signal power.
This value will be measured by sampling
the overall voltage of the incoming signal.
The position of this text on the screen will
be controlled using the buttons.

Stretch The single antenna used to receive
the NTSC signal will be replaced
with a multidirectional antenna
array, controlled by a switching
matrix. The switching matrix would
select which antenna to read video
data from by comparing the signal
strength at each antenna. The
FPGA will be used to both estimate
signal power and control the logic
for the switching matrix.

Instead of applying the filters when
manually toggled, an option will be
available to automatically apply filters to
the image based on aggregate values of
pixel data. For example, the system may
calculate the overall average brightness of
an image and automatically adjust the
levels of the Y channel to compensate.
Additionally, this may be combined with
thresholding, which would allow different
adjustments to be applied to regions of
the image with different brightnesses.

5

Block Diagram:

6

