
FPGAFOC 
Field Programmable Gate Array Field Oriented Control 

Jackson Gray                     Aaron Yeiser 
 
Introduction 
 
We are planning on designing an FPGA implementation of Field Oriented Control (FOC) for 
brushless motors.  An FPGA is perfect for controlling a brushless motors because it allows 
complex control loops with substantial amounts of digital processing to execute at high 
frequency and low latency. Our motor controller will implement field-oriented control---an 
advanced digital control strategy for driving various types of multiphase motors.  Designing the 
FPGA implementation of field oriented control will involve optimizing and pipelining trig functions 
and matrix math. A variety of modules will need to be developed for a variety of mathematical 
operations, transforms, signal conditioning, as well as designs for interfacing with the hardware, 
including serial interfaces, pwm generators, and large telemetry file handling. 
 
Brushless motors are three phase synchronous permanent magnet motors that require 
electronic commutation.  The lack of mechanical contacts is advantageous for weight and 
longevity, but they require complex control electronics.  There are many different methods for 
controlling brushless motors, and one of the most useful methods is field oriented control, or 
FOC.  FOC is a control strategy that controls the phase and magnitude of the currents through 
the three phases of the motor.  Specifically, the three observed motor phase currents are 
mathematically transformed into currents directly in phase with the motor’s electrical angle (D 
current) and in quadrature with the motor’s electrical angle (Q current).  In an ideal electric 
motor with no rotor reluctance, we only want Q current to be nonzero.  By changing D and Q 
voltages, we can do an inverse transform to get the target voltages for each motor phase. 
These voltages are used to generate PWM signals on each motor phase, with these PWM 
signals optimized to avoid excessive switching. 
 
FOC is an extremely powerful motor control strategy.  One advantage of FOC is that the control 
loop for FOC can be run substantially slower than other similar control strategies because the Q 
and D currents are relatively slow to change, even with a rapidly spinning motor.  FOC can be 
easily adapted to induction motors, as well as motors with nonzero reluctance torque.  With 
knowledge of motor parameters, sensorless control of the motor can be integrated into FOC. 
FOC also gives accurate torque control of the motor, enabling a brushless motor to be used as 
a servomotor. 
 
Goals 
 
The goal of our project is to build a functioning brushless motor controller using FOC with a real 
electric motor.  We recognize that the task of designing interfaces for the power electronics will 



be challenging and error-prone, so our commitment goal will be to have a working model of the 
motor controller in simulation.  Once we have a working FOC controller, we have many options 
for stretch goals, including sensorless control, servo position and velocity control, and adding a 
USB serial interface. 
 
FOC - FPGA Implementation Details 
 
Each block of FOC will be implemented as its own Verilog module, and all of the modules 
described here implicitly have clock and reset inputs.  Each module will also have an individual 
testbench. 
 
The SVPWM module serves two functions:  synchronizing the control loop and generating PWM 
signals.  This module takes in target voltages for each phase of the motor and outputs PWM 
signals optimized for driving a three phase motor.  It also outputs a clock signal at the PWM 
frequency used for synchronizing the other blocks of the control loop.  This frequency will be 
between 50 and 200 kHz, depending on the switching capabilities of the Prius inverter block. 
The SVPWM testbench will verify the clock frequency and the signal characteristics of the 
outputted PWM signals. 
 
The ADC decoder module will be used to interface with the physical output pins dedicated to 
receiving serial data from an external ADC.  It will operate synchronously with the PWM clock, 
and it will receive the SVPWM timing signal and gate drive signals as inputs.  This is because 
the ADC decoder module should have the ability to reject ADC samples that occur while the 
inverter is switching due to the switching noise, assuming switching noise is a problem.  The 
output will be the average of valid current sensor data over one PWM clock cycle.  This module 
may also include additional noise reduction signal processing and extrapolation based on 
SVPWM timing signals. 
 
The SPI receiver module will be used to interface with physical output pins dedicated to reading 
SPI signals from the resolver decoder.  It will operate asynchronously of the PWM clock and will 
store the received signals in a buffer.  The inputs are the SPI clock and data pins, and the 
outputs are the data buffer and a data ready wire.  The testbench for this module will feed in 
valid SPI test signals and verify the buffer data and the data ready wire timing. 
 
The resolver decoder outputs SPI packets for position and velocity, and we need to separate 
those two kinds of packets.  The resolver demodulator module interfaces with the SPI decoder. 
It takes a data ready wire and a data buffer as inputs and has two output data buffers--one for 
position and one for velocity.  It also outputs a pulse on the velocity ready and position ready 
wires when new data arrives.  This module operates asynchronously from the FOC control loop 
and feeds into the position and velocity estimator module.  Testing this module will involve 
putting position and velocity packets in the input buffer and making sure they are sorted 
correctly and that the data ready wires are triggered properly. 
 



The position and velocity estimator module takes in asynchronous data from the resolver 
demodulator and outputs position and velocity synchronized with the FOC control loop, as well 
as a data ready signal.  At the beginning of each FOC control cycle, as triggered by the SVPWM 
module, this module takes the last valid position estimate and multiplies the last valid velocity 
estimate by the time since the last valid position estimate was received.  Then, it will put this 
new angular position estimate and the last valid velocity estimate into output registers and pulse 
the data ready wire.  The testbench for this module will asynchronously input position and 
velocity and verify the correctness of the estimations. 
 
The Clark/Park module takes in three signed inputs corresponding to currents through phases 
A, B, and C of the motor, as well as the angle and data ready line from the position/velocity 
estimator. 
Once triggered by the data ready line, the Clark/Park module performs a sine/cosine lookup 
using the CORDIC module for the received angle and performs a 3x2 matrix multiplication 
followed by a 2x2 matrix multiplication to calculate the Q and D currents.  These are output 
registers, as well as a data ready line. 
 
The inverse Clark/Park module takes in Q and D target voltages and angle from the 
position/velocity estimator.  It does sine/cosine lookup using CORDIC and then performs two 
matrix operations to produce target voltages for each phase.  These target voltages are output 
registers, as well as a data ready line. 
 
The PI controller module takes in a target current and data ready line and outputs a target 
voltage and data ready line.  The Kp and Ki coefficients are module parameters. 
 
The motor simulation testbench will be used to test the FOC control loop in simulation.  Inputs 
will be the motor input voltages and the motor rotation speed, and the motor phase currents will 
be the outputs.  This motor model will include back emf, as well as winding resistance and 
self-inductance.  The SVPWM module outputs will feed into the motor emulator, and the angle 
and current outputs from the emulator will bypass the position/velocity estimator and ADC 
interface outputs, respectively. 
 
FOC - Hardware Implementation Details 
 
We will have a handful of hardware components required for our project. This includes the 
Inverter, a motor with integrated position sensor, a position sensor decoder, and an adapter pcb 
for interfacing the fpga with the other hardware components. 
 
The Inverter we will be using is an integrated solution designed for the toyota prius (gen2) which 
has isolated gate driving, isolated current sense amplifiers, and hardware over-current and 
over-temperature protection. It can be controlled through a 26 pin control connector. This 
connector has three digital inputs for desired state of the gate drivers for the three phases, as 
well as two analog output lines representing the current across two of the three phases. 
 



The motor we will be using is a Hyundai Sonata HSG motor, a 30kw 3-phase interior permanent 
magnet (IPM) motor. It has a variable reluctance resolver on end of the motor shaft, for 
detecting the rotor position. Additionally, the motor has connections for a temperature sensor 
and housing grounding. 
 
The resolver connection from the motor will be received by the resolver decoder board, which 
has AD2S1205 resolver-to-digital IC and it’s necessary peripheral circuitry. This IC excites the 
drive windings of the resolver, and observes the signal’s coupling to the A and B sense coils. By 
observing which coupling is greater, the resolver decoder can deduce the angular position and 
velocity of the motor rotor. The IC then communicates the position and velocity information via 
an SPI bus every ~1Mhz.  
 
All of these devices will interface with the FPGA through an adapter board. This board handles 
both power distribution to the components (except for main inverter power), as well as routing 
and logic level conversion for the various signals. This board will also have a four channel high 
frequency 12 bit ADC for converting the analog current sense signals to digital, and a couple 
smaller low frequency ADC’s for reading vbus voltage, and different throttle inputs.  
 
In lieu of the Nexys board, we intend to primarily use the CMOD-A7-35T, an ARTIX-7 FPGA dev 
board in a DIP format. This device offers us an ARTIX-7 FPGA in a much more compact and 
portable form factor, so that we can better integrate it into our system. It will interact connect 
with the motherboard via a high density mezzanine connector, to save space on the main board 
and so that we can develop a board for connecting through the Nexys pmod connectors, in the 
occasional event where we want the nexys’ resources or peripherals.  
 
 
 
Appendix - System Module Details 
 
FPGA Software Module 
Test Software 
Hardware Task 
 
A * next to the name means we need to write a testbench for it 
Clock, reset, and enable lines are not explicitly written here 
 
SVPWM Block​ * (Jackson) 

● Inputs 
○ Phase A Voltage 
○ Phase B Voltage 
○ Phase C Voltage 
○ Switching frequency 

● Output 
○ PWM A 
○ PWM B 
○ PWM C 
○ Loop update trigger 



● Description 
○ Will require one counter register for triangle wave generation 
○ Possibly error compensation accumulators 

 
Clark/Park block​ * (Aaron) 

● Inputs 
○ Phase A, B, C state vector 
○ Angle 

● Outputs 
○ Q/D transformed signal 

● Description 
○ Use CORDIC module for sin/cos 
○ Pipeline 

 
Inverse Clark block​ * (Aaron) 

● Inputs 
○ sin/cos 

● Outputs 
○ Phase A, B, C state vector 

● Description 
○ 2x3 matrix multiply 

 
PI controller​ * (Aaron) 

● Inputs 
○ Kp, Ki 
○ Signal to PI control 

● Outputs 
○ whatever the fuck you call ​the output 

● Description 
○ It is a PI controller 

SPI Module​ * (Jackson) 
● Inputs 

○ Data word to transmit 
○ Write  

● Outputs 
○ Received Data Word (n bits) 
○ Receive Ready 
○ Send Ready 

● Description 
○ Generates or receives clocking dependant on master/slave 

● Submodules 
○ SPI Rx 
○ SPI Tx 

Resolver Demultiplexer​ * (Jackson) 
● Inputs 

○ Data words received from the spi module (12 bit) 
● Outputs 

○ Position (two’s comp 12 bit) 



○ Velocity (two’s comp 12 bit) 
● Description 

○ Outputs updated whenever a new data word is available from the spi module 
Position Generator​ * (Aaron) 

● Inputs 
○ Position (two’s comp 12 bit) 
○ Velocity (two’s comp 12 bit) 

● Outputs 
○ Motor Theta (Unsigned n=16 Bit) 

● Description 
○ Integrates velocity to position to estimate theta at arbitrary times between 

samples of position 
○ Possibly implement fixed gain Kalman filter? 

ADC interface​ (Aaron) 
● Inputs 

○ Serial interface 
○ SVPWM timing signals 

● Outputs 
○ Voltage (two’s comp 12 bit) 
○ ADC trigger 

● Description 
○ Reads serial signals from ADCs 
○ If we determine that electrical is a problem, rejects data received during inverter 

switching 
 
Motor emulator​ (Aaron) 

● Inputs 
○ Motor speed 
○ Phase A, B, C voltages 
○ Inductance, resistance, Kv 

● Outputs 
○ Phase A, B, C currents 
○ Phase angle 

● Description 
○ A testbench of a sinusoidal linear idealized motor for testing the FOC control loop 

 
Motherboard​ (Jackson) 

● Description 
○ Interfaces the FPGA with a variety of connectors and peripherals 
○ Delivers power to fpga, resolver, and inverter logic. 
○ Carries the high speed ADCs for the inverter current sensors. 
○ Performs logic level conversion for the signals going to the inverter. 
○ Has connectors for peripheral stuff, like throttle inputs and estops and others. 

 
Inverter 

● Inputs 
○ Phase A, B, C gate drive 
○ Power Bus +/- 



○ Signal pwr/gnd 
● Outputs 

○ Current A, B 
○ Phase A, B, C power 

● Description 
○ Prius power inverter block 

 
Resolver 

● Inputs 
○ 6.144 - 10.24 MHz crystal oscillator between xtal and clkin 
○ sin, cos hi/lo differential signals 

● Outputs 
○ SPI bus / SCLK 
○ Parallel bus 
○ EXC hi/lo exciter 
○ Fault lines 

● Description 
○ AD2S1210 



 


