
FPGA Ray Tracer
Parker Huntington and Cece Chu



Rendering: Two classes of methods
Rasterization Ray Tracing

- Simulate light
- Reverse the problem -> light comes from 

camera
- Easier to get photorealism
- More computationally complex



Project Overview
- Take a simplified ray tracer
- Only consider cubes
- Limit the optical effects
- Divide space up using an octree



Project Overview
What is Ray Tracing?

● Graphics technique for rendering realistic images
● Shoot rays out from the observer/camera to determine pixel color

Why an FPGA Ray Tracer?

● Many rays in parallel -> hardware 
Acceleration

● Many opportunities for optimization
and expansion

https://developer.nvidia.com/discover/ray-tracing

https://developer.nvidia.com/discover/ray-tracing


Block Diagram
Pynq Z2 board

1. Spatial information written from 
computer interface to BRAM

2. Camera position written from to 
config port

3. Ray Tracer started, reads spatial 
data + writes pixels to frame buffer

4. Ray Tracer finished, frame 
displayed via HDMI



Memory Subsystem (Cece)
Function: Store data and service read/write requests

Protocol:

- Masters (Ray Tracer submodules, computer interface) send read/write 
requests to slaves (BRAM, DRAM)

- Data transfer when valid signal from master and ready signal from slave = 1
- Requests mediated by arbiters
- For reads, master ID is attached to returned data, all masters on common bus

M1

M2

S1Arbiter



Memory Subsystem (Cece)
Spatial Information: stored in BRAM

Frame buffer: stored in DRAM, each pixel is 24bit RGB

Config port: registers storing configuration information for ray tracer and display

Crossbar: routes requests to the correct slave depending on address, arbitrates 
between simultaneous requests

Binary arbiters: Arbitrates requests between two masters (Ray Units)

Challenges: interfacing with AXI, handling master IDs, avoiding bottlenecks



Display Module (Cece)
Function: display pixels from frame buffer on a screen. Goal: 720p HDMI

Implementation:

- Stream pixel data from the DRAM frame buffer using a VDMA module
- Add video signals using AXI Stream to Video Out module
- Convert to HDMI output using RGB to DVI module

Challenges: working with AXI, proper configuration/interaction with IPs

DRAM Zynq PS 
(Mem ctrl) VDMA

AXI-S to 
Video

RGB to 
DVI

Sync/blank
Video 
Timing

pixels

VGA HDMI



Ray Tracer (Parker)
- Responsible for all ray tracing operations
- Setup up through config
- Generates rays

- Normalized

- Sends to ray unit
- Propagates
- Scatters



Ray Tracer (Parker)
- Color

- Running color calculation

- Ray Propagator
- Moves ray out of leaf node
- Binary search leaf boundaries

- Memory
- Traverses octree
- Keeps pointer stack for optimization
- Gets leaf color info

- Major FSM
- Coordinates submodules



Computer Interface/Top-level FSM
Function: Transfer external data into system, set camera angle and other configs, 
control operation of other modules

Implementation:

- AXI module connected to ARM cores
- Bridges PS to custom memory buss



Goals
- Tier 1:

- Static scene
- Multiple camera angles

- Tier 2:
- Diffuse scattering

- Tier 3:
- Volumetric scattering

- Tier 4:
- Minecraft



Timeline
Week 1 (Nov 10): Verify/simulate ray tracing algorithm, working display module 
with frame buffer in DRAM

Week 2 (Nov 17): Single unit ray tracer with working memory hookup and frame 
generation

Week 3 (Nov 24): Multiple ray units

Week 4 (Dec 1): Implement stretch goals (scattering, animations)

Week 5 (Dec 8): Buffer week/work on report

Week 6 (Dec 11): Finalize report


