
FPGA Tetris
Roberto Garcia



Block Diagram



Game Logic – Game State

• A game state can be represented by the state of all currently placed 
squares, as well as the currently falling Tetromino

• The playing grid is comprised of 200 squares, each of which will be in 
a colored state or empty state

• Grid will transition states upon a falling Tetromino landing

• A falling Tetromino can be in 1 of 4 rotational orientation states, and 
any coordinate
• Next state will be determined by rotation input and left/right input



Graphics

• Character Generation:
• Identically sized characters A-Z, 0-9 stored in memory

• Can be parsed together to display text and scores

• Playing grid generation:
• Draw 200 unique squares

• Each square will be colored by feeding in the corresponding color state and 
mapping it to an RGB value



Game Logic – Tetromino Generator

• There are 7 unique Tetrominoes

• Generate using a linear-feedback shift register, a pseudorandom 
number generator



Game Logic – Tetromino Generator

• Problem
• Initial seed results in same first game every play session

• Solution
• Cycle through LFSR every clock cycle in background

• Next Tetromino is a function of PRNG sequence and how much time has 
elapsed since last Tetromino generation



NES Controller Interface

• A 12 us Latch pulse commands the controller capture the current 
state of all buttons

• Button states are sent serially via 6us pulses

• Repeating every 120 us gives 138 samples/frame to debounce with



Audio

• A single theme song will be continuously playing on a loop
• Stored in SD card

• Simple short-tone sound effects will be included
• Higher priority, will momentarily pause music playback



SD card

• Interfaced with using the provided SD controller

• Music:
• preload music data bits directly using software to avoid SD filesystem

• Read only

• High Scores:
• Can be stored in predetermined location anywhere on SD card that does not 

overlap with music

• Reads and writes



Timeline

• 11/4: Display matrix of Tetrominoes, begin implementing core 
gameplay logic via FPGA button inputs

• 11/11: Finish implementing core gameplay logic, add text generation

• 11/18: Add NES controller interface, add sound effects

• 11/25: Implement music reading from SD card and high score 
saving/loading

• 12/2: Debugging


