

HFT Accelerator

Terminology:

Stock: a virtual object which someone can sell or buy.

Order: a request to buy or sell a stock.

Bids: a request to buy a stock at a particular price

Ask: a request to sell a stock at a particular price

Exchange: a third party entity that matches groups interested in buying / selling stocks.
Sends market updates to market participants over network.

Automated trading: a computer strategy that connects to an exchange and submits
orders with the objective of making money.

HFT: High frequency trading, a subset of automated trading where the objective is to
react quickly to changes in the market, and submit orders with ultra low latency.

Objective:
HFT or High frequency trading, a subset of automated trading where the objective is to
react quickly to changes in the market, and submit trades. The flow of information is as
follows: the exchange sends market data through ethernet (describing the current price
of the stock, who is interested in buying and selling). The HFT engine is responsible for
receiving this data, parsing it with the protocol provided by the exchange, updating is
internal state about the market, and submitting orders back to the exchange in reaction
to market updates.
In summary:
HFT firms and market makers need ultra-low latency solutions to quickly:

1) filter the market datastream from the exchange.

2) update their knowledge of the market to keep track of best prices for stocks
(building an order book).

3) Submit trades to the exchange based on the information.

For our 6.111 project, we are interested in building an HFT (High Frequency Trading)
accelerator in FPGA.

Block Diagram for HFT Accelerator

We will connect the FPGA with our laptop over ethernet, and have a script that sends market
data using the exchange protocol over TCP (to simulate the exchange). The FPGA will have an
ethernet stack (TCP), which will receive the market data from the laptop. It will forward to the
parser module, which is responsible for implementing the exchange protocol and parsing what
orders were submitted / canceled, or what trades happened on the market.

The parser module will forward the parsed information into the order book module, which is
used to represent the current state of the market (outstanding bids, and asks).

The order book module will forward the best price for each stock to the trading module. It will
periodically send a snapshot of the order book to a laptop so that we can display it. The trading
module will do calculations based on the best price of the stocks at this time step, as well as in
the previous time step to decide what orders to submit to the market.

The trading module outputs orders over ethernet to the laptop, and the laptop displays the
orders from the FPGA.

In more detail, here are the different components:

Ethernet IP Stack:

The IP stack is based heavily on Vivado’s AXI IPs and Microblaze IP. The FPGA that we have
have a PHY (physical chip for Ethernet). We plan to use AXI ethernet lite to interface with the
physical layer Ethernet protocol and the Microblaze to handle the higher level TCP/IP protocol.
The Microblaze and the Ethernet lite IP will interface through the AXI protocol. The relevant
packets then would appear in the Microblaze’s local memory. We will need to figure out a way to
interface with the Microblaze (probably have to be through AXI) and get its memory (job of
parsing stack). Not sure what throughput we can ultimately end up with this way.

There is much uncertainty surrounding whether or not we can get the stack to work even with
heavy usage of xilinx ips.

Ethernet IP Stack

Parsing:

On a high level, the Parser is posed to communicate with the Mircoblaze softcore processor, get
and process the structured data being sent to it in a wise manner. It is posed to receive
structured data in the format specified by [1] and extract relevant information that can be used
to construct the order book. The structured data take the form of a string of Bytes in Big endian
format that are structured per specification. For initial implementation, We will be receiving
structured data and sending parsed information back through UART. Then We would implement
the AXI protocol needed to communicate with the Mircoblaze IP and retrieve structured data

from its internal memory.

An example string of inputs is the following.

Length
in Bytes

Type Value Meaning

1 Message 8’hA Add order

4 Timestamp 32’h0300 Time that order happened

4 Order number 32’h03BA Unique value to distinguish order

1/8 Buy or sell 1’b1 A Buy order

4 Shares 32’h01BB The total number of shares

8 Stock Symbol 64”h0AAB_2341 Which stock the order concerns

4 Price 32’hBABB The price offered to buy

1. http://nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTV-ITC
H-V4_1.pdf

Trading strategy:

The high level idea is to keep track of an estimate of the covariance matrix between the
one-minute normalized returns of all our securities. Then we will construct a min-risk portfolio by
inverting the covariance matrix. We can then generate orders to update our positions to hit the
target portfolio.

The trading logic module is composed of various submodules as indicated in the diagram. We
will assume that the order book builder can provide us with the latest bid/ask price vector of all
the securities we are tracking and a delayed bid/ask price, perhaps from 1 minute ago. (Note
that we do not use any other information of the order book to decouple our modules for ease of
testing) From those two price vectors, we can calculate the normalized return for each security
using fixed point division. This will give us an observation of the latest normalized return vector
for the securities we are tracking, which we will call ​v​.

From ​v​, we can update our covariance matrix Σ. If the current covariance matrix is obtained
from n observations, then we simply multiply it by n, add to it the outer product of our new
observation, then divide the whole thing by n+1. The formula is this: .nΣ v) n)(+ v T ÷ (+ 1

Now the calculation of the risk is just where ​w ​is the current relative positions. We don’tΣwwT
have to do the matrix vector product however, and do something smart. We only have to

http://nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTV-ITCH-V4_1.pdf
http://nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTV-ITCH-V4_1.pdf

incrementally update this value, which reduces to adding the contribution of the new
observation, which is . This means we just have to do a dot product, greatlyvv w 2(v w)wT T = T
reducing the latency for risk computations. This will be realized through an adder tree. The
updated risk will be displayed in decimal on the hex display. The latency here is on the order of
tens of cycles (i.e. nanoseconds).

This covariance matrix will be used in the next step, which is construction of the minimum risk
portfolio. This amounts to calculating the following quantity: , and then normalizing it. Σ 1x = −1
In effect, we have to solve a linear system with the covariance matrix as the coefficients of the
unknowns. In linear algebra, it is typical to first perform QR decomposition and then solve the
resulting upper triangular system for better numerical stability.

There are typically three ways to perform QR decomp. Householder reflections and
gram-schmidt are well suited for cases where we have access to many parallel multipliers,
which is not the case on the Artix-7. We will perform the QR decomposition using the Givens
rotation method using Cordic processors. [2]

We present the overall system diagram here:

We also present the FSM diagram for the key trading logic in the following figure. The QR
module does the Givens rotation in stages, where in each stage some columns are rotated in
parallel. Afterwards, the result is fed to an upper triangular solver module. We implement a
folded design where each stage reuse the same arctan and rotate CORDIC modules, since the
Artix-7 does not have that much resources on the chip. ​These modules have been
implemented and work in simulation for a 4 by 4 linear system.

1. Cordic citation:
https://web.njit.edu/~akansu/PAPERS/Torun-Yilmaz-Akansu-FPGAPortfolioRisk-ICASS
P2013.pdf

2. https://ieeexplore.ieee.org/document/7110554

Book Building:

One of the most important aspects of a trading system is having an internal succinct
representation of what is happening on the market: this data structure is typically referred to as
an Order Book. The Order Book captures the current range of price for each stock including
what the “price ladder” is. There is two sides in an order book: “ask” and “bid”. An ask is a
request to sell a stock at a particular price, and a “bid” is a request to buy a stock. An order
book maintains both of these information per stock. Each side is sorted by price, and for each
price, there is a list of orders with that price.
This reflects that people want to trade with the best price on the market, while giving priority

https://web.njit.edu/~akansu/PAPERS/Torun-Yilmaz-Akansu-FPGAPortfolioRisk-ICASSP2013.pdf
https://web.njit.edu/~akansu/PAPERS/Torun-Yilmaz-Akansu-FPGAPortfolioRisk-ICASSP2013.pdf
https://ieeexplore.ieee.org/document/7110554

within the same price to orders that arrived earlier.
An order book is represented as a binary search tree on the price, where each price has

a linked list internally sorted by the time of arrival. There is also the concept of “depth” of a book
which represents how many distinct prices its keeping track of. This data structure is highly non
trivial to implement efficiently on FPGA because of the sequential nature of the order book, and
the algorithm complexity of implementing tree rotations on FPGA in a low latency manner.

Each order is uniquely associated with an order_id assigned by the exchange, and there is a
“ticker” which determines the offsets between the different prices. For example a ticker of “0.1”
means the price ladders goes from 90 to 90.1 to 90.2 and so on. The state of the order book will
be stored in BRAM.

Supported Operations (Input / Output):
The order book supports three operations:
AddOrder:

CancelOrder:

getBestPrice:

Block diagram for Order Book

Targets:
Basic:
Keeps track of best price and aggregate quantity at that price, per stock (only one price ladder).
This information is stored in an array indexed by stock. Can calculate risk in real time.

Target:
Fully functional order book with multiple levels, and support for multiple tickers, and some basic
performance optimizations to reduce latency. No support for concurrent modifications. Can
calculate risk in real time and do some form of eigendecomposition.

Stretch:
Massive reduction of latency in accessing and modifying the order book by taking advantage of
the parallelism of the FPGA.
We will be following “Exploring the Potential of Reconfigurable Platforms for Order Book
Update” ​https://www.doc.ic.ac.uk/~wl/papers/17/fpl17ch.pdf​ which describes a highly optimized
Order Book.
Fully functional trading strategy and 200 ns risk computation.

Challenges:

Order Book:
The orderbook will likely use up a lot of resources on the FPGA because the depth on
exchanges is large, and implementing a fast order book requires a lot of physical resources. All

https://www.doc.ic.ac.uk/~wl/papers/17/fpl17ch.pdf

the functions declared share the same underlying BRAM, which is used to store the actual order
book and it will be difficult to synchronize the usage of this structure while also being fast. Its
likely that the order book update has to be deeply pipelined and making sure its doesn’t
bottleneck our system will be crucial.

Trading Strategy Challenges:
The key technical challenge here is 1) how to efficiently implement the risk update, (which
needs to execute in less than ~20 cycles assuming 100 MHz clock to be competitive with state
of the art implementations). The operations involved here are relatively simple fortunately, just
involving division, vector dot product and multiplication. This provides interesting exercise in
lower level performance engineering. (e.g. where/if you pipeline etc.) 2) Implementing the
systolic array of CORDIC processors to perform the eigen-decomposition. The operations
involved here are quite complex, but the timing constraints are not as dire. (We do not want to
trade excessively in fear of commission costs etc.) This provides good practice in designing
complex systems and minimizing area usage.

Combination
Each part will have different demands on compute resources. Will be hard to balance the needs
of order book vs trading strategy etc.

Timeline:

 Week 1 (Nov 4) Week 2 (Nov 11) Week 3 (Nov 18) Week 4 (Nov
25)

Week 5 (Dec 2)

Ethernet/Pa
rser

detailed FSM
diagram of how
the parser
works, have
testbench over

 implement parser
module with test
bench

debug parser
module and start
performance
optimization

Explicit
Integration.

Look into stretch
goals, and
performance
optimizations.

Book
building

implement order
book software
implementation,
complete high
level
microarchitectur
e design with
resource
estimates.

implement
first-pass verilog
module with test
bench

debug order book
verilog
implementation,
start looking at
performance
optimization

Explicit
Integration.

Look into stretch
goals, and
performance
optimizations.

Trading
logic

Implement
matrix inversion
module and test
bench in verilog
to get resource
estimate.

functionally debug
matrix inversion
module and get
updated resource
estimates

implement the rest
of the risk
computations,
trade updates, etc.

Explicit
Integration.

Look into stretch
goals, and
performance
optimizations.

