
Commitment / Basic:
Team:
Each individual component works in isolation. Demonstrates functional correctness in
simulation, in comparison to C++ or Python test script.
Individual components:
Ethernet/Parser:

- Capable of receiving structured message complying to Nasdaq ITCH protocol over
Ethernet and grab relevant information Correctly.

- Supports outputs pertaining to add and cancel order messages.
- Correctness is verified by cross checking output over Ethernet.

Book building:
- Correctly supports adding, canceling orders, and market trades in simulation.
- State of the order book (price ladder per stock, how many quantities per order) are

forwarded from simulation to a CSV file.
- Output from simulation (CSV file) will be compared against another script running on my

laptop that is also fed the same data as the simulation, and make sure the order book
structure matches with the simulation.

Trading logic:
- Has logic to update the covariance matrix and returns vector to update linear system to

solve.
- Correctly solves a N by N linear system, subject to certain constraints (no fixed point

overflow during the QR and upper triangular solve, bad condition number arising from
fixed point error etc.) in simulation. Compare solutions to Python test bench.

- Correctly generates orders to submit over the Ethernet stack.

Goal:
Team:
System integration. Be able to feed live data from laptop to FPGA and get an order back. The
order makes sense and is comparable to C++ system. Latency and performance measurements
of the aggregate system are done by computing latency measurements from and to the FPGA
on the laptop.
Individual components:
Parser:

- Capable of receiving structured message complying to Nasdaq ITCH protocol over
Ethernet and grab relevant information Correctly.

- Supports outputs pertaining to add and cancel order messages.
- Capable of sending structured message complying to Nasdaq OTCH protocol over

Ethernet by utilizing outputs from the Trading logic.
- Correctness is verified by cross checking output in over Ethernet.

Book building:
- Correct functionality when synthesized on FPGA.
- Interfaces with Parser module to get orders / cancels / trades from the market.

- Interfaces with trading module to expose best bid and ask prices for all the stocks.
- Periodically forwards state of the order book (price ladder per stock, how many

quantities per order) to laptop through Ethernet so that it can be visually displayed on
laptop.

- Optimize resource usage to fit with other modules (Parser, and Trading Logic).
Trading logic:

- Correct functionality when synthesized on FPGA.
- Correctly interfaces with the order book module, to take snapshots of the market state.
- Correctly interfaces with the Ethernet stack to actually send those orders over TCP.
- Optimizes resource usage so that it can fit alongside with the other modules.

Stretch goal:
Team:
System performance. Add latency measurements across the entire system (latency from getting
an order to parsing it, from parsing to building the book, then from book to trade updates). Do
resource measurements of our current system in terms of logic units used, how much memory
used. Analyze what kind of throughout and latency our system can handle. Finally, Explore
area/latency tradeoffs subject to resource constraints on lab hardware. Compare with
state-of-the-art commercial solutions when normalized to resource usage.
Individual components:
Ethernet/Parser:

- Supports back-pressure from Book without dropping packets. This requires
implementing and sizing a buffer space when there is bursts in the market, i.e, density
relevant information momentarily increases due to sharp increase in market activity.

- Bypass trading logic operating on select information directly from the parsing module.
- Replace The Microblaze softcore IP used for abstracting TCP/IP protocol with

light-weight ethernet stack. This will enable a tight pipeline from packet to parser
- Performance and latency measurement of the parser for a more precise latency

measurement.

Book building:

The latency and memory usage of the order book is dependant on the number of stocks,
how many distinct prices we support, and how many bits we allow for order ids.
Analyzing the theoretical and empirical memory usage, and latency.
Explore an implementation of the order book where the orders for each price ladder is
stored as linked list instead of arrays. This brings the cost of canceling an order in the
data structure to O(1) from O(length of orders in price ladder). Will require implementing
memory management (like malloc, free) on the FPGA, and implementing a double linked
list on the FPGA. This will increase the memory usage on the FPGA, so there might be
some tradeoffs to make in terms of resource usage. The higher memory usage might
also increase the latency on BRAM.

Trading logic:

- Explore different designs of linear solver module (folded vs pipeline) and assess the
area/latency tradeoff.

- Merge the rotator and arctan cordic IP modules in a custom cordic module. (Probably
quite difficult, but described in literature.)

Time Line:

 Week 1 (Nov 4) Week 2 (Nov 11) Week 3 (Nov 18) Week 4 (Nov
25)

Week 5 (Dec 2)

Ethernet/Pa
rser

Microblaze IP
creation and
detailing its
interaction with
the parser.

Implement parser
module with test
bench.

debug parser
module and start
performance
optimization.

Look into stretch
goals. Explicit
Integration.

Finish up
implementing
stretch goals, and
performance
optimizations.

Book
building

implement order
book software
implementation,
complete high
level
microarchitectur
e design with
resource
estimates.

implement
first-pass verilog
module with test
bench.

debug order book
verilog
implementation,
start looking at
performance
optimization.

Look into stretch
goals. Explicit
Integration.

Finish up
implementing
stretch goals, and
performance
optimizations.

Trading
logic

Implement
matrix inversion
module and test
bench in verilog
to get resource
estimate.

functionally debug
matrix inversion
module and get
updated resource
estimates.

implement the rest
of the risk
computations,
trade updates, etc.

Look into stretch
goals.Explicit
Integration.

Finish up
implementing
stretch goals, and
performance
optimizations.

(Implicit Integration all throughout the project. This is done by having a main repo that has latest
working bits of each of our projects integrated as a whole unit.)

