FPGAaautotune Checklist

Kika Arias and Elaine Ng

- The Commitment: (all modules work separately and not in real time)
 - Spectrogram (Kika)
 - Visualization of the STFT on the monitor
 - Will be tested by visualizing a signal of known frequency
 - STFT (Elaine)
 - Short time fourier transform of the input audio signal
 - Will be tested by using the spectrogram visualization on a test signal of known frequency
 - Peak Detection (Kika)
 - Detects the note onsets in the STFT
 - Detects the main frequencies in the STFT
 - Tested visually by using the Spectrogram (peaks will be colored differently than the rest of the graph)
 - Frequency Shift (Elaine)
 - The signal will be reconstructed in sine tones at the correct frequencies
 - To the nearest note on the Western scale
 - This will be tested by outputting the corrected audio and also visually with the spectrogram visualizer
 - Input audio (Kika)
 - This module takes in audio from an external microphone.
 - This will be tested by outputting audio on headset
 - Output Audio (Kika)
 - This module outputs the audio to an external headset or speaker
 - This will be tested by listening to the audio
- The Goal:
 - Integration (Elaine + Kika):
 - All modules in the commitment working together
 - Output a recording of pitch corrected audio 30 seconds long (Elaine)
 - Uses SD Card for memory (Kika)
- Stretch Goal:
 - Different voice effects (Elaine + Kika)
 - Make voice sound like a chipmunk or Darth Vader
 - This module will be tested by applying the effect on test signals and listening to the output
 - Saving and loading audio (up to 1 minute long) (Kika)
 - Frequency Shift (Elaine)
 - This module generates the filter and takes its IFFT and multiplies the filter in the time domain

- This will be tested using test signals of known frequencies that will be played to the system
- Real time autotune (Elaine + Kika)