
digitEyez
Claire Traweek, Kendall Garner

Overview
We plan on using the Nexys 4 DDR to make a responsive stereoscope. We will do this

with an IMU, two small color OLED screens and the biconvex lenses commonly found in Google
Cardboard headsets. We plan to design a scene that changes as the user tilts their head, giving
the impression of being immersed in a virtual world. Ideally, the stretch goal for this project
would be to generate the environment from music like Windows Media Player or similar
visualization tools.

Hardware + Extras
● 3 LCD displays: used as the displays for the glasses. Because of how close they

are to the user’s face, we’re opting for HD displays, which commonly come in
240x240 pixels.

● 1 IMU: used for getting acceleration and gyroscope data, to respond to user
input.

● 1 “glasses” frame: something akin to the Google cardboard headset that is
capable of holding two displays in place

● 1 FPGA: We intend to use the Nexys 4 DDR, but if the amount of resources
needed to generate the images and process sensor data is not excessive, having
a smaller FPGA would allow for more mobility

● 1 hat/FPGA mounting apparatus: in the event that we require the full processing
power of the Nexys FPGA, we would need to construct some apparatus to place
it relatively close to the glasses. We’ve been thinking about attaching it to a hat,
but are concerned about breaking it. For development we’ll accept a limited
range of motion and keep the FPGA on the table, at least to start.

Modules

Position Module

The position module will be responsible for detecting changes to the user using

spherical coordinates in two axes: the azimuthal axis (left and right, from 0 to 359
degrees), and the polar axis (vertical, from -90 to 90 degrees). At first, this calculation
will be done through two input sources: the IMU accelerometer, and buttons. The IMU
will be responsible for calculating the angle between the glasses and horizontal via the
accelerometer. When the glasses are tilted towards the ceiling, it would report a
positive angle, or a negative angle otherwise. To prevent sudden movement or natural
shaking from resulting in an extremely shaky image, the IMU data would be passed into
a filter. Similarly, pressing a button will control the azimuthal axis.

Targets:
● Minimal: IMU controls vertical movement, buttons control horizontal movement
● Goal: IMU accelerometer controls vertical movement, gyroscope controls

horizontal movement. A risk associated with this task is that, while the
gyroscope can detect movement, there is a risk of drift.

● Stretch: Position manager is able to detect movement (forwards/backwards).
This requires more state, as well as determining rough forward movement.

Complexity and Debugging
Since this module depends on input from an IMU or similar component, the

calculations will be tied to the clock of the IMU and the rate at which data is received.
For example, if we used components similar to that of lab 5B, then we would expect to
update the position roughly every 4 ms (100Hz). Aside from multipliers for passing
values into a filter or potentially scaling accelerometer/gyroscope readings, this

https://www.draw.io/?page-id=p3zzbEMKSShYGqkRPahx&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

component only needs a few registers for state and adders for computation (on the
order of 10s of btis, depending on the precision needed). Debugging the data receiver
can be done using a combination of the ILA, hex display, and scope probes. Debugging
the data itself will likely be done using the ILA or hex display, with serious challenges
specced out in test benches.

Task Division
Due to lab 5 divisions, Kendall will take the lead on this task.

Image Representation (memory/generation)

Once the current coordinates have been calculated, they have to be converted

into something meaningful before generating an image. We take images stored in
jpegs, present them onto a hemisphere, and then determine how the image intersects
with the user’s screens. Once we have these new coordinates, they will be passed into
other components to generate images. We have three possible approaches for
generating images (ordered in increasing difficulty): a fixed/generated “horizon,” a 180
or 360-degree image stored in memory, or an auto generated 3D figure. To reduce
computational requirements, we would start by working with grayscale images,
reducing the amount of data needed for a pixel. Each image generation module would
be able to interface with the VGA output in lab for debugging, and also output data for
smaller screens, likely communicating over SPI.

https://www.draw.io/?page-id=ZJS4124wSVKzjtqIgYua&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

We have three different scenes we want to be able to display. The first, and
simplest, would be a hard-coded/generated horizon. This “horizon” would consist of
layers of colors that appear to remain horizontal to the viewer. Calculating the image
pixels would be reasonably easy, as we could associate entire rows/columns with a
single color. A (relatively significant) step up from this would be to use 180- and/or
360-degree images, akin to those of Google Maps street view. The challenge here
would be on determining how to store the values in a memory (assuming memory can
even fit such an image), and converting the spherical coordinates to the now-flattened
images. A stretch goal would be to take this static image a step further, and generate
three-dimensional figures (cubes, rectangular prisms, etc). This would require 3D
graphics, and converting the spherical coordinates to something that can appropriately
describe how to view a shape.

Sample source image format--the image will need to be converted to grayscale

and resized before its uploaded to the Nexys. However, it’s already in
equirectangular-panoramic format, which is what we plan to work with.

Targets:
● Minimal: be able to represent a fixed horizon (colors changing based off of

vertical, horizontal axes)
● Goal: be able to represent and store a hemisphere or spherical image (akin to

something from Google maps) using memory
● Stretch: be able to generate three-dimensional figures that change appearances

based off of the angle viewed

Complexity and Challenges
● Coordinate Converter: This module converts the x and y coordinates in the

image what is eventually projected. More information on this process is
available in the sources.

● Horizon Generator: This will be the simplest module and the least taxing.
It will be a good test to benchmark what frame rate we are capable of,
and how jittery the IMU is.

● 360 degree image display: Standard 360 degree images are actually just
rectangular jpegs. A common size is 750x375. For memory conservation,
we plan on using only grayscale eight bit. That means each image would
take 2,250,000 bits, fitting comfortably within the Nexxys’ capabilities.
We will use COEs to improve the quality for each image

● Landscape generator: This is a stretch goal, but we anticipate the
resource drain being the speed of the Nexys. Unfortunately, we don’t
have a great understanding of how we are limited, but some steps we can
take to work with our computation limitations are to drop the fps,
generate in monochrome or 4 bit color, and not to hold our generator to
very strict standards as far as image wrapping is concerned. As an
additional, very stretch add on, we think it would be interesting to
generate the landscape based off of music, like the old Windows media
player. However, we realize this will require a seperate music processing
module and is likely outside of our abilities given our limited time frame.
However, should we implement the rest of the project quickly, it is
something we will consider.

Task Division
Kendall will take the lead on the angle related aspects of this module, and Claire

will focus on the image display/projection aspects.

Image Splitting

https://www.draw.io/?page-id=8m8OH5D2ifynqzdyZ0Kz&scale=auto#G1FMpCRTJv0VvfptxTz6g7oZ3mTDAgM8KQ

The image splitter component will be responsible for taking a color value and

coordinates in the initial image and calculating the right positions for the left and right
displays given some horizontal offset between the two. This data will then be
communicated via SPI to each LCD display. As a first pass, the goal will be to take the
incoming image and and divide it vertically, with reasonable overlap to create the
appearance of a single image. Further adjustments may be necessary based on screen
size.

Targets:
● Minimal: project the same image to two screens.
● Stretch: Introduce binocular overlap, allow for two different images for

stereoscopic viewing.

Complexity:
This module will require us to devise a module to communicate with the LCD

displays. Because we do not yet have the displays, the specifics of this module are yet
to be determined. In the interim, we plan to debug over VGA by displaying two squares
the same pixel size as our anticipated screen. Our first pass will simply split the image
in two, cutting squares the same pixel size as our screen that change based on the
position from the position module. We will then calibrate for screen size, possibly
scaling the image for a more natural feel. We will then introduce binocular overlap,
widening the FOV. Eventually, for our generated module, we will allow for two separate
images to display, to give the sensation of 3d.

Task division:
Claire will be responsible for this module.

Sources

https://vr-lens-lab.com/field-of-view-for-virtual-reality-headsets/
https://kei-studios.com/quick-guide-degrees-of-freedom-virtual-reality-vr/
https://www.roadtovr.com/understanding-binocular-overlap-and-why-its-impor

tant-for-vr-headsets/
https://developers.google.com/vr/discover/360-degree-media
https://web.archive.org/web/20180903203919/http://sensics.com/how-binocula

r-overlap-impacts-horizontal-field-of-view/

https://vr-lens-lab.com/field-of-view-for-virtual-reality-headsets/
https://kei-studios.com/quick-guide-degrees-of-freedom-virtual-reality-vr/
https://www.roadtovr.com/understanding-binocular-overlap-and-why-its-important-for-vr-headsets/
https://www.roadtovr.com/understanding-binocular-overlap-and-why-its-important-for-vr-headsets/
https://developers.google.com/vr/discover/360-degree-media
https://web.archive.org/web/20180903203919/http://sensics.com/how-binocular-overlap-impacts-horizontal-field-of-view/
https://web.archive.org/web/20180903203919/http://sensics.com/how-binocular-overlap-impacts-horizontal-field-of-view/

