
6.111 Project Proposal 
 

Mario Bros Classic in Real Life 
 

Jose Guajardo, Nancy Hidalgo, Isabelle Chong 
 

  



System Overview and Block Diagram: 
For our 6.111 final project, we will recreate the side-scrolling Mario Bros Classic game 

for Nintendo with several added functionalities. One of the major challenges we expect will be 
storing and loading the graphics of the level as Mario moves. Additionally, we will be 
implementing interactions between Mario and his environment using collision detection. 
 
We will program this project on the Nexys4-DDR FPGA using the XVGA display to host the 
game graphics. We will also make use of some of the internal/external memory to load the map 
and sprites onto the display. The initial goal of the project is to create a level where Mario can 
jump over and stomp Goombas to complete the level.  
 
We are also thinking about possible add-ons for our game. Instead of using buttons to move 
Mario around the screen, the player will make Mario perform actions by performing them in real 
life with an IMU controller with at least two IMU sensors. For instance, to make Mario jump, the 
controller should be accelerated upward. To make Mario move in a direction, the IMU controller 
can be tilted in either direction.  
 
 
Simplified Overall Block Diagram: 
A block diagram with modules needed and simplified inputs:  
 

 



Collision Detection, Sprite Movement and Game State FSM: Nancy Hidalgo 
The game mechanics will be primarily controlled with two modules: a Sprite Movement 

module and a collision detection module. The sprite movement module will dictate the 
movement of two different types of sprites: the Mario/Luigi sprites and the Goomba sprites. For 
Mario/Luigi’s movement, the module will take the input of the buttons/IMU make Mario/Luigi 
jump and ‘move’ to the right/left (in actuality, the background will move left/right). For the 
Goomba’s movement, they will constantly move at some speed, then flip directions when they 
run into a pipe. This module will also take the output from the collision detection module.  

The collision detection module will determine whether there is a collision between sprites 
and then update the overall game FSM. This module will take the positions of the different 
sprites as inputs and output whether there was a collision, whether the player lost a life (by 
colliding into a Goomba or falling into a hole), and whether a player has won (by ‘colliding’ into 
the flag at the end of the level). This module will be the most complicated of the three that I’m 
making.  

The Game state FSM will be a simple FSM consisting of 4 states: a PAUSE state where 
the player has pushed a button to pause the game and no sprites move, a GAME_OVER state 
where the player has lost 3 lives and the screen will display white “GAME OVER” text over a 
black screen, a START state where the game has just started or been restarted after a player 
has lost, and a GAME_PLAY which would be the default state, where a player is just playing the 
game. 

The Game FSM and the sprite movement modules each have outputs that are inputs to 
the XVGA module which then outputs to the screen. Therefore, combined with the XVGA 
module, they have to have a throughput faster than the screen refresh rate (60 Hz). 

 
 



Sprite Generation: Izzy Chong 
The generation of sprites within the game will be done using COE files, similar to how 

the Death Star blob was generated in lab 3, and pure pixel blobs, similar to the simple rectangle 
blob also done in the pong game. Characters like Mario and the Goombas will be generated 
using the COE files, while environmental elements will be generated as “blocks,” or squares of 
pixel “material,” such as “ground,” “pipe,” or “cloud.” This allows the game setting to take up less 
storage in memory because rather than having to store multiple pixels, we can store a reduced 
number of block locations. Each sprite (Mario, Goomba, blocks of different materials) will get 
their own module. Typical inputs would be parameters for width and height,  clock, x_position, 
y_position, hcount_in, vcount_in, and pixel_out. 

 
We will also include a Gameboy device skin to be displayed on the FPGA around the 

gameplay screen. This will help enhance user experience while also lowering the amount of 
memory needed to generate the side-scrolling effect of the game by making the number of 
pixels stored smaller. The Gameboy skin will be constantly displayed and will highlight player 
actions in real time on the screen (e.g., if the player makes Mario jump, the corresponding 
button on the gameboy skin will indicate being pressed), and will not need to be stored in 
memory. To create this device skin, we will create a draw_gameboy module which will take as 
input a clock, hcount_in, vcount_in, hsync, vsync, and player actions and output a 
correspondingly altered gameboy design through pixel_out. This module will update the 



gameboy screen once every full raster of the XVGA.  
Because these modules are visually-based, the majority of testing for them will involve 

synthesizing the modules to hardware and checking if the necessary blocks appear on screen. 

 
 
 
 
  



XVGA, Map Memory, Side Scrolling: Jose Guajardo 
We plan to use an XVGA module similar to the one used in the pong game lab.  In the 

pong game lab, we became familiar with generating, displaying, and moving objects through 
XVGA. However, in order to implement out Mario Bros. game, we will have to add additional 
functionality. 

We expect the side scrolling game functionality to be a significant challenge for our 
project. In the pong game lab, we became familiar with generating, displaying, and moving 
objects through XVGA. We will be adding several functionalities to allow for side scrolling. 
Firstly, in order to load the map as Mario progresses throughout the level, we will have to store 
the starting location and size of each object in the environment (clouds, ground, Goomba) in 
BRAM. Additionally, we will need to keep track of the location of the player in relation to the 
entire level in order to determine which sprites to load onto the screen as Mario approaches 
them.  

In general, our approach will be to move all objects in the environment in the direction 
opposite to the player’s inputted direction. That is, if the player wants Mario to move right, all 
objects in the environment will move left, while Mario stays at the center of the screen. As Mario 
moves, he will be interacting with his environment and its collision boxes. The first iteration of 
the side scrolling module will have functionality in the forward direction. Then, we will implement 
side scrolling while moving backward. Eventually, the side scrolling module will connect to the 
Mario movement module, which provides information about the direction Mario will move in 
depending on his collisions. Then, we can decide if the map should scroll forward or backward. 

In order to implement side scrolling functionality, we will read from BRAM with an 
address that represents the location of Mario in the level. At that address, the location and size 
of any objects in view will be saved and accessed. Once we know which objects should be 
present on the screen, we can generate their sprites using the sprite generation module, which 
will output them to XVGA. 
 
 

 

 
  



IMU Implementation: Izzy Chong 
We plan to implement an IMU controller that allows players to tilt the IMU and make 

Mario jump and move left and right. This is similar to lab 5b, so much of the code for this portion 
can be taken from that implementation. We will read IMU data in through the Teensy and use 
those acceleration measurements to control Mario’s motion. Tilting the IMU around the X axis 
will direct Mario to move left and right, while tilting it around the Y axis (or, alternatively, lifting it 
up in the Z direction) will direct Mario to jump. This method will use an IIR filter, similar to that 
used in lab 5b, to prevent Mario from “jittering” too much, but with the d value hard-coded in.  

 
To test this module, we could create a test bench with dummy signals to make sure the 

IMU is reading in data in the proper cycles (i.e., waiting for data at appropriate times, reading at 
appropriate times).  
 
Miscellaneous Add-Ons: 

If we are able to complete the material already listed in the proposal, we could begin 
working on the following add-ons to improve the quality of our game: 

● Adding nostalgic music and sound effects 
● Ground pounding/going into pipes 
● Including a green screen avatar of the player in the game so they can play as 

themselves instead of as Mario. 
● Two player mode 
● Making Mario look like he is running when moving 


