Mario Bros
Classic

|sabelle Chong
Jose Guajardo
Nancy Hidalgo

What is Mario Bros (lassic?

SCORE TIME HWORLD COINS LIVES
O 294 1-1 O =
SUPCGR 4

©1985 NINTENDO
MOVE: ARROMWS. WASD
FIRE/SPRINT: SHIFT. CTRL
PAUSE: P RIGHTCLICK

JUNE N BN P B P S P B P B PN B M

System Block Diagram

.
4

(=)
{ IMU Controller Block \
Clock 5| Converts IMU acceleration
Reset data into a left, right and
m—) jump movement signalto ——
ﬂ» control player movement
()
~ / Video and Display Block
“-—»| CoE and ROM for Sprites
IMU Data VGA
~—»| Background/Map ROM Out
Side-scrolling Module
(=))
Game Mechanics Block \XVGA)
Button Inpdts | Mario & Gooma Movement ——
Collision Detection
\ Game State FSM /
L\ y /

N\ 4

- o

Our Implementation - Terminology

Our Implementation - Terminology

Our Implementation - Terminology

Left edge Right edge =
Left edge + 1024

Our Implementation - Terminology

For each object (cloud, platform, hole), Map
ROM wiill store:

Left edge Right edge =
Left edge + 1024
{abs_loc_x, abs_loc_y, width, height, sprite_id}

Different ROMs

e Location ROM
e Sprite ROM
e Background ROMs

Game Mechanics

You died
You won
v ¢ -
Pause ‘(' Game State FSM R Collision Detection
Button Inputs Based on user inputs, Based on ALL Sprites
Reset 2% 0 A% 3
»| Mario’s position, eic, position determines

outputs a state (Game play. Mario and Goomba | collisions, and updates the

pause, game over, reset). s position game FSM and the

Keeps track of metrics movement modules

e =
\ i
State
Collision_type
s
Up Movement w Mario and Goomba
: > Updates Mario's relative < position > To Sprite Pipeline
Right | . .
IMU Inputs »| position based on user

—Left | 5| inputs and collision with

other sprites

\& =

Video and Graphics Block

() () =
Enable Object Location ROM Mario
Updates an enable array Stores information about includes 8-bit Mario
with objects that have each object in the generation
@bsolute position in camera) kmap/leveL) L)
A =) A S _A A
©c 5 € o o| abs.location| 22 _
© 2 o = c 22 i 2 = a8|3 2
=] &L ¢ £t | width, height| S aslg =
88 5" ks § 8 sprite ID Eals
Mario position S vy o \4 S = \4
Savelocity (1. Updat ter that keeps track of which object is being rendered (updated
- Sprite Pipeline: Jpdates a counter that keeps track of which object is being rendered (updated as soon as
camera position p p - sprite_complete goes high)
h/v count 2. Contains logic to determine addresses for Location ROM [to XVGA]
L 3. Calculates relative position of objects depending on absolute positions and camera location
91\ L o | =
2 - HE
_|E abs. location | 2 olo| 2
9 - X =
219 width, height | S = S| =
Eld , height | 'S 2‘
=4 sprite ID
@ v (Background]
(Object Generation FSM Module W Updates background
depending on Mario's
Generates Sprite address depending on sprite ID, rel. location, width, velocity
height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.
(23 1]
© '% g © g
3 58 a !
\ 4 \ 4
(Sprite ROM] (Background ROM

Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)

Stores pixel values for one
column of the background
(including ground + sky)

Enable Object and Location ROM Modules

) (

Enable Object Location ROM
Updates an enable array Stores information about
with objects that have each object in the

\absolute position in camera) kmap/level.)
®)
© c e} 8 oo | abs.location|
5.8 T > c 28 : =
£ = o ® £ €| width, height| S
= =% T 33

-

Which objects should be displayed, and where?

Left edge Right edge = /
Left edge + 1024 (Enable Object w (Location ROM w

Updates an enable array Stores information about
with objects that have each object in the

absolute position in camera map/level.

A ® o A
® 5 5. -@ @ 5| abs. location| 5
gz s 8 ® ¢ width, height| S
\ 88 g = %88 sprite ID

sprite Pipeline

Mario position
& velocity

Enable Object

Updates an enable array
with objects that have
\\absolute position in camera

A

3

amera
osition

(Location ROM

)

Stores information about

each object in the

(Mario

includes 8-bit Mario

obj. enable
array

s 1D
SpPITte T

map/level.
@ A
| abs. location |
5 width, height| €
O
o

dddress
(¢ounter)

4

generation
k<] al\ﬁll
= 2| .
2813 2
2= Q =
62| 2 =
= >
(S T
=

7

camera position

YN

h/v count

What if an object is
moving due to
side-scrolling?

A

1. Updates a counter that keeps track of which object is being rendered (updated as soon as

Sprite Pipe"ne: sprite_complete goes high)

2. Contains logic to determine addresses for Location ROM
3. Calculates relative position of objects depending on absolute positions and camera location

=

= v
. g abs. location |
%|0° width, height | S
= 0.)‘ ’ g >

E sprite ID

i Y v

Object Generation FSM Module

Generates Sprite address depending on sprite ID, rel. location, width,

height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.

pixel

sprite
address

i
<€

Sprite ROM

| J

Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)

pixel
hiv count
Mario pgs.
Mario vél.

&

A
(Background

<

Updates background
depending on Mario's
velocity

pixel
address

A 4
(Background ROM

Stores pixel values for one
column of the background
(including ground + sky)

ject and Sprite Generation Modules
(-

p

Mario

generation
\

includes 8-bit Mario

tior)

5
= abs. location |
2|3 idth, height | S
= EI Wi : eig <
g sprite ID
2]
(Object Generation FSM Module w

Generates Sprite address depending on sprite ID, rel. location, width,
height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.

pixel
sprite
address

(Sprite ROM

g

Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)

& velocity

viario posi
h/v count

o

pixel

Accessing and Generating Sprites

Sprite Complete

Generating Sprite

QA

®

[=%
SNEE abs. location |
o8 . : =
£l o width, height | ©

z sprite ID

& \ 4

(Object Generation FSM Module

L/

Generates Sprite address depending on sprite ID, rel. location, width,
height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.

pixel
sprite
address

y
(Sprite ROM

\

Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)

>aving sprites as Logic and in Memory (-

e §8-bit sprite drawing modules
o Mario
o Goomba
o Floor gaps

e COE files

o Platforms

o Pipes

o Clouds and bushes

o Gameboy background interface

|3

Mario/Goomba W

includes 8-bit Mario
generation

tior)

I

& velocity

e

viario posi
h/v count

’

—
pixel

l/

3
=% ‘
/ _|E abs. location |

% e

O ; ; =
.g m| width, height | ©

= sprite ID

(2]

~

Object Generation FSM Module

height, and h/v count. Once the maximum Sprite address is reached for

Generates Sprite address depending on sprite ID, rel. location, width,
that item, send out a sprite_complete flag.

|

pixel
sprite
address

<&

Sprite ROM

Stores pixel values for objects in the map. Sprite address depends on
\ the sprite ID, which describes the type of object (cloud, platform, hole)

¥

Backeround Generation Modules

-

mrm
’ I
= =|=s

[=% ©
== |2

(Background

Updates background
depending on Mario's
velocity

I

pixel
address

v
(Background ROM w

Stores pixel values for one
column of the background

K (including ground + sky) j

Backeround Generation

(@)

O

Display objects that are always always on screen

Sky and floor in game environment background
Gameboy interface from COE

Saves memory by making gameplay area smaller

Enhances user experience- buttons on interface will be overlaid with blob sprites

that change color to appear “pressed”

p

\

pixel

/v count
Mario pos
Mario vel

i

h

| A

(

Background

depending on Mario's

Updates background
velocity

|

pixel

address

(Background ROM w

Stores pixel values for one

column of the background
(including ground + sky)

p

IMU Controller

e Similar to implementation used in lab 5b- interface with Teensy
e Tilting in the x direction will determine if Mario moves forward or

backward
e Tilting in the y direction determines if Mario jumps

[Game Movement \

IMU Calibration Module IIR Module Converter Module
left

x_val, y_val, z_val x_val, y_val, z_val >
| Filters IMU data based on Converts accelerometer right

Y

clock

Output goes to Game FSM

Read in and process data | into Mari
reset from the IMU and calibrate some d val values into Mario _
movement signals jump

A

Y V¥

calibrate

it based on a user specified
position
_ A \ A NS J

d_val (can be designer-specified)

Goals

Commitment

Working game with button
inputs

One direction of
movement and side
scrolling and jumping

End game flag movement

Baseline

Working game with IMU
controller

Two-directional movement
Add a Star Coin

SD Card Audio

Stretch

Pick out of the following:
IMU Speed

Player Avatars
Two-Player Mode
Wireless IMU Controller

Timeline

Nancy

Jose

|lzzy

Week 1

Create Game FSM
and collision
detection modules.

Create Enable Object

Modules, Location
ROM and Sprite
Pipeline

Generate COE files
and bit art for game
sprites and
environment
background

Week 2

Create movement
module

Create Object
Generation Module
and integrate with
Sprite Pipeline and
Sprite ROM

Implement IMU
controller and

Gameboy User
Interface (GUI ;)

Week 3

Integrate modules
and start working
on add-ons

Integrate Graphics
block with
remaining system
blocks

Integrate sprites
with game map
and memory
module

Week 4

Add-ons and
integration

Add-ons and
system-level
debugging

Integration and
debugging for full
project

Questions

