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Our Implementation - Terminology




Our Implementation - Terminology




Our Implementation - Terminology

Left edge Right edge =
Left edge + 1024



Our Implementation - Terminology

For each object (cloud, platform, hole), Map
ROM wiill store:

Left edge Right edge =
Left edge + 1024
{abs_loc_x, abs_loc_y, width, height, sprite_id}



Different ROMs

e Location ROM
e Sprite ROM
e Background ROMs



Game Mechanics
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Video and Graphics Block
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Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)

Stores pixel values for one
column of the background
(including ground + sky)




Enable Object and Location ROM Modules
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Which objects should be displayed, and where?

Left edge Right edge = /
Left edge + 1024 ( Enable Object w ( Location ROM w

Updates an enable array Stores information about
with objects that have each object in the

absolute position in camera map/level.
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sprite Pipeline

Mario position
& velocity

Enable Object

Updates an enable array
with objects that have
\\absolute position in camera
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What if an object is
moving due to
side-scrolling?
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1. Updates a counter that keeps track of which object is being rendered (updated as soon as

Sprite Pipe"ne: sprite_complete goes high)

2. Contains logic to determine addresses for Location ROM
3. Calculates relative position of objects depending on absolute positions and camera location
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Object Generation FSM Module

Generates Sprite address depending on sprite ID, rel. location, width,

height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.
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Sprite ROM
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Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)
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Updates background
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(including ground + sky)




ject and Sprite Generation Modules
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Generates Sprite address depending on sprite ID, rel. location, width,
height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.
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Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)
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Accessing and Generating Sprites

Sprite Complete

Generating Sprite
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Generates Sprite address depending on sprite ID, rel. location, width,
height, and h/v count. Once the maximum Sprite address is reached for
that item, send out a sprite_complete flag.
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Stores pixel values for objects in the map. Sprite address depends on
the sprite ID, which describes the type of object (cloud, platform, hole)




>aving sprites as Logic and in Memory (-

e §8-bit sprite drawing modules
o Mario
o Goomba
o Floor gaps

e COE files

o Platforms

o Pipes

o Clouds and bushes

o Gameboy background interface
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Object Generation FSM Module

height, and h/v count. Once the maximum Sprite address is reached for

Generates Sprite address depending on sprite ID, rel. location, width,
that item, send out a sprite_complete flag.
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Sprite ROM

Stores pixel values for objects in the map. Sprite address depends on
\ the sprite ID, which describes the type of object (cloud, platform, hole)
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Backeround Generation Modules
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Updates background
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Backeround Generation
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Display objects that are always always on screen

Sky and floor in game environment background
Gameboy interface from COE

Saves memory by making gameplay area smaller

Enhances user experience- buttons on interface will be overlaid with blob sprites

that change color to appear “pressed”
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IMU Controller

e Similar to implementation used in lab 5b- interface with Teensy
e Tilting in the x direction will determine if Mario moves forward or

backward
e Tilting in the y direction determines if Mario jumps

[ Game Movement \

IMU Calibration Module IIR Module Converter Module
left

x_val, y_val, z_val x_val, y_val, z_val >
| Filters IMU data based on Converts accelerometer right

Y

clock

Output goes to Game FSM

Read in and process data | into Mari
reset from the IMU and calibrate some d val values into Mario _
movement signals jump
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Goals

Commitment

Working game with button
inputs

One direction of
movement and side
scrolling and jumping

End game flag movement

Baseline

Working game with IMU
controller

Two-directional movement
Add a Star Coin

SD Card Audio

Stretch

Pick out of the following:
IMU Speed

Player Avatars
Two-Player Mode
Wireless IMU Controller



Timeline
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Week 1

Create Game FSM
and collision
detection modules.

Create Enable Object

Modules, Location
ROM and Sprite
Pipeline

Generate COE files
and bit art for game
sprites and
environment
background

Week 2

Create movement
module

Create Object
Generation Module
and integrate with
Sprite Pipeline and
Sprite ROM

Implement IMU
controller and

Gameboy User
Interface (GUI ;)

Week 3

Integrate modules
and start working
on add-ons

Integrate Graphics
block with
remaining system
blocks

Integrate sprites
with game map
and memory
module

Week 4

Add-ons and
integration

Add-ons and
system-level
debugging

Integration and
debugging for full
project



Questions




