
 1

6.111 Final Project Proposal: 3D Tetris

Charity Midenyo, Jenessa Rodriguez, Bradley Seymour

MIT EECS

3D TETRIS 2

Abstract

A working Tetris game (“random” next block, falls down and stacks, if a row is full, it is

cleared, etc). The playing field will have depth and the ability to rotate the playing field in all

directions. We will use a controller to play the game, so that will have to be mapped. And no

Tetris game is complete without the short song being played. Stretch goals are to create various

challenge modes and a working title screen.

3D TETRIS 3

6.111 Final Project Proposal: 3D Tetris

35 years ago, the world was introduced to the Tetris1. Since then, Tetris has grown

exponentially, with all various conceivable versions having been created. One of the more rare

versions of Tetris would be the 3D version. 3D Tetris was first introduced to the world in 1996

on Nintendo’s Virtual Boy console2. The failure of Virtual Boy as a console notwithstanding, the

game itself attempted to revolutionize the way Tetris was played. The next version of a 3D

Tetris would be presented to the world as Tetrisphere. Released in 19973 for the Nintendo 64,

Tetrisphere proved the concept of a 3D version of Tetris to be viable. Assuming an appropriate

representation of the playing field and control system implemented by the developers, a new

standard for how 3D Tetris should be played was born. Our team intends to create a version of

3D Tetris, utilizing these games as inspiration for our personal take on how 3D Tetris should

look, play, and most importantly, feel.

Implementation

Our game will be built utilizing a Xilinix Nexys 4 DDR FPGA board to create the

game logic, graphics system, and I/O control. After research into available gamepads,

our team settled on use of Sony’s Dualshock 4 (DS4) gamepad. The decision to utilize

a DS4 was born from the convenience of availability coupled with finding reports on the

organization of output data and report generation rates utilized via USB mode. Our team

identified three major aspects requiring creation to bring 3D Tetris to life, the game logic,

a 3D graphics engine, and I/O logic modules. Each major area of design will further be

broken into smaller modules as follows.

1 (Wikipedia: Tetris, n.d.)
2 (Wikipedia: 3D Tetris, n.d.)
3 (Wikipedia: Tetrisphere, n.d.)

3D TETRIS 4

Game Logic

Three FSM modules will lay at the heart of the game: block movement, line removal and scoring

(LRS), next block generation. The block movement FSM will decide based on gamepad input

how to position a tetromino within the playing field. As with all Tetris games, holding down on

the D-Pad will increase the falling velocity. Data from the block movement FSM will be sent to

the LRS FSM to determine when a line needs to be removed from play. The LRS FSM will also

tally score for placed tetrominos and cleared lines. When the LRS FSM returns to idle, the next

block FSM will activate. Taking a pseudo-random number from the generator, the next piece can

be chosen for the player. Upon completion of the update state, the game logic control module

will pass a 3D array containing all relevant RGB data for the playing field to the 2D/3D graphics

engine.

Module List.

1. Game Piece Movement FSM

a. Inputs: Button Presses, 8bit

b. Outputs: Movement Direction State

 10x20 Array, X, Y format, 12bit RGB

c. Function:

1. Move the piece down (whether naturally or controlled)

2. When to stop moving down

3. Move left

4. Move right

5. Rotate

2. Line Removal and Scoring FSM

a. Inputs: Game Piece Movement FSM State

b. Outputs: Score, 16bit

 10x20 Array, X, Y format, 12bit RGB elements

 LRS FSM State

c. Function:

1. Remove one line

2. Remove two lines

3. Remove three lines

4. Removed four lines

3D TETRIS 5

5. Move the lines above down

6. Update the score accordingly

3. Next Block FSM

a. Inputs: LRS FSM State

RNG Value, 16bit

b. Outputs: 10x20 Array, X, Y format, 12bit RGB elements

c. Function:

1. Generate the next piece

2. When to send the next piece

3D Graphics Engine

 Representing a 3D object on a 2D screen is no easy feat. The human brain must be

tricked into seeing 3D space through use of appropriate scaling and shading of 2D objects. The

triangle is chosen as the simplest 2D object that can be drawn and accurately scaled to a given

field of view to maintain a 3D perspective. These calculations are to be performed utilizing 16

bit numbers to represent each x, y, and z point in space. The 16 bit number will be broken into a

12bit integer with a 4 bit mantissa to allow for pseudo floating point operations to be

performed. These values are subject to change to allow for greater precision when drawing the

game field should it be required. To support the calculations, a matrix math module will be

created for ease of coding in Verilog. The goal is to create sufficient modules and arrays such

that the Verilog code can be treated in a manner similar to a higher level coding language to

create the 3D field. As a stretch goal, texture maps will be utilized to replace the RGB color

values for each 3D object drawn.

Module List.

1. Game Board to Mesh

a. Input: Array, 10 x 20 elements, 12bits per element representing RGB values

b. Output: Vector of 12bit X,Y values

 Vector 12 bit RGB values for each cube at (X, Y) position

c. Function: Steps through 10x20 Array, creating 2 Byte X and Y values from each

2. Triangle from Mesh

a. Input: Vector of (X,Y) values

b. Output: 10x20 Array of (X,Y) vectors representing each field

3D TETRIS 6

c. Function: Takes the playing field

3. Triangle transformation

a. Input Array of vectors for each triangle vertex

b. Output: Array of vectors for each triangle vertex

c. Function: Each vertex arrives as a 3D point that needs to be projected to a 2D

field. This module will scale and modify each field to create the projection of a

3D shape to 2D space.

4. Matrix Math

a. Input : 4x4 Matrix, 1x4 Matrix

b. Output: 1x4 Matrix

c. Function: Performs necessary calculations on a given set of coordinates to scale

appropriately for “3D” effect. Returns actual location of 3D point.

5. Draw shape:

a. Input: 3 1x4 matrix representing a single triangle

b. Output RGB color value

c. Function: Transform a triangle represented by 3 1x4 matrices into RGB color

space.

Input/Output

 On their own, input and output from systems is often overlooked and forgotten

about. Our game will require several independent IO modules to properly function. The design

calls for the use of a Sony Dualshock 4 (DS4) as the input gamepad. The intention is to use the

D-Pad to control block movements around a “2D” plane, similar to the way the original Tetris is

played. Additionally, two of the 4 buttons will be utilized to rotate a block within 2D

space. Finally, the analog sticks on the DS4 will be used to rotate and zoom the game board in

3D space. The UI will be drawn in 2D space, and for early testing purposes, a 2D game board

will be created to enable testing of game logic. If time allows, an audio system will be

implemented to incorporate the traditional songs of Tetris as well as block collision sounds and

line clearing sounds. These files will be stored on flash RAM for access by the game as

required. A COE file of ASCII values will be stored in BRAM for access and use by the scoring

subsystem. Separate COE files will be utilized to display the next piece the user is will receive.

3D TETRIS 7

Module List.

1. Controller Inputs

a. Input: DS4 input - once every 4ms

b. Parses the data dump of the controller to get the information necessary to the

game and rotation of the screen

2. Game controls

a. Inputs: down left, right, rotate movement of block

b. Output: byte with the first 4 bits representing the movements above (if rotate

button is pressed, the 4th bit would be a 1)

3. Rotational controls

a. Input: 4 byte values representing up, down, left, right , rotation of the tetris board

b. Output: 200 wide array of 12 bit representing x,y,z of each tetris block in the

game

4. 2D output display

a. Inputs :

1. 200 wide array of the location of each block

2. 200 wide array of the color of each block - can be black

3. Player score

4. Game level

5. Next piece

b. Output - renders the tetris game board in xvga screen, with all of the blocks and

score, level and next piece

c. Part of this module output will be overwritten by the 3d module, but it will be

useful to have a working 2d rendering of the game for testing

Deliverables

 The following events will serve as proof for each portion of the game working:

Input-Output Modules

 Being able to see and process controller data as lights flashing on the FPGA

 Calculating Z location for rotation around 1 Axis - show on the FPGA digits

 Calculating Z location for rotation around All Axis - 3D display

 Draw Tetris Screen- UI and 2D play screen

 Update screen from Game module- UI and 2D play screen

 Play game with controller in 2D

Game Logic.

 Show automatic falling block.

 Falling blocks stop when striking bottom of screen or block.

 Move a block down, left, right, and rotate.

3D TETRIS 8

 Clear a line when full.

 Clear multiple lines when full.

 Update game score when lines cleared.

 Update game score when single piece completes movement.

 Be able to send data to 2D playing field

 Choose, create, and send next block to 2D playing field.

 Create the next block after scoring and line removal.

Sound Engine.

 Play Tetris sound

3D Graphics Engine.

 Matrix math modules, known inputs display correct outputs in simulation

 Draw a single block in 3D space

 Rotate a block in 3D space

 Build a 3D playing field of tetronimos

 Rotate 3D field about single axis

 Zoom field along Z-axis

 Draw a 3D field based on given input data

 Rotate field in 3D space and zoom

3D TETRIS 9

Block Diagram

3D TETRIS 10

References

Wikipedia: 3D Tetris. (n.d.). Retrieved 10 27, 2019, from https://en.wikipedia.org/wiki/3D_Tetris

Wikipedia: Nintendo Entertainment System. (n.d.). Retrieved 10 27, 2019, from

https://en.wikipedia.org/wiki/Nintendo_Entertainment_System

Wikipedia: Tetrisphere. (n.d.). Retrieved 10 27, 2019, from

https://en.wikipedia.org/wiki/Tetrisphere

3D TETRIS 11

Footnotes

1[Add footnotes, if any, on their own page following references. For APA formatting

requirements, it’s easy to just type your own footnote references and notes. To format a footnote

reference, select the number and then, on the Home tab, in the Styles gallery, click Footnote

Reference. The body of a footnote, such as this example, uses the Normal text style. (Note: If

you delete this sample footnote, don’t forget to delete its in-text reference as well. That’s at the

end of the sample Heading 2 paragraph on the first page of body content in this template.)]

3D TETRIS 12

Tables

Table 1

[Table Title]

Column Head Column Head Column Head Column Head Column Head

Row Head 123 123 123 123

Row Head 456 456 456 456

Row Head 789 789 789 789

Row Head 123 123 123 123

Row Head 456 456 456 456

Row Head 789 789 789 789

Note: [Place all tables for your paper in a tables section, following references (and, if applicable,

footnotes). Start a new page for each table, include a table number and table title for each, as

shown on this page. All explanatory text appears in a table note that follows the table, such as

this one. Use the Table/Figure style, available on the Home tab, in the Styles gallery, to get the

spacing between table and note. Tables in APA format can use single or 1.5 line spacing.

Include a heading for every row and column, even if the content seems obvious. A default table

style has been setup for this template that fits APA guidelines. To insert a table, on the Insert tab,

click Table.]

3D TETRIS 13

Figures title:

Figure 1. [Include all figures in their own section, following references (and footnotes and tables,

if applicable). Include a numbered caption for each figure. Use the Table/Figure style for easy

spacing between figure and caption.]

For more information about all elements of APA formatting, please consult the APA Style

Manual, 6th Edition.

0

1

2

3

4

5

6

Category 1 Category 2 Category 3 Category 4

Series 1 Series 2 Series 3

