
ChessAI
Play against a computer IRL

The Chess Board

What’s so special about it?

• Detects the positions of the figures

• Shows legal moves

• Shows opponent’s moves

You can play a chess game against a computer without seeing

or knowing how to use a computer.

The Chess Board

Player lifts a figure

LEDs indicate legal positions

The Chess Board

The Chess Board – Figure detection

MUX1

MUXes switch through

64 possible

combinations and

create a 64-bit string

showing the board

state

but that is not

enough!

Chess Game FSM (Example binary)

11111111

11111111

00000000

00000000

00000000

00000000

11111111

11111111

Board_state [63:0] example progression

10111111

11111111

00000000

00000000

00000000

00000000

11111111

11111111

10111111

11111111

00100000

00000000

00000000

00000000

11111111

11111111

Chess Game FSM (Example decision tree)

Board States [63:0] example progression

1. There are exactly 32 pieces

2. All pieces occupy ranks

1,2,7,8

1. Orientation is white on top

2. Every piece type is now set

(Queens on their respective

colors)

3. from_to [11:0] should

alternate between f3 and h3

1. Knight location

updated

2. Send move to PC

over UART

Chess Game FSM

● Inputs:

○ Clk_in - Standard 100mhz clock

○ [63:0] board_state - cleaned bitmask showing current state

(piece / no piece) of each square

○ Board_state_ready - goes high when previous modules finish

reading + cleaning

● Outputs:

○ Show_pos - controls when to turn on LEDs

○ [11:0] from_to - Abstractly controls which LEDs to turn on

Chess Game FSM (Challenges)

● Intricacies of move validity validation

● Evaluating possibility of capture when move order is broken

● Anything involving multiple pieces

a. Capture

b. Castling

c. Piece promotion

Chess Board FSM Python Chess AI

Communicating with python-chess

● A full piece

movement has

occurred

● Validity has been

checked

● FSM has been

updated

● Convert move to

ascii (“g1f3”)

● Receive piece movement
● board.push(chess.
Move.from_uci(
"g1f3"))
● result =
engine.play(board,
chess.engine.Limit(tim
e=0.1))
● Send back piece

movement

UART like Lab 2 (“g1f3”)

The Chess Board – Figure Movement Indication

MUX1

Block Diagram

Block Diagram

Block Diagram

Block Diagram

Project Timeline and Workload

Week of Bahrudin Grayson

Nov 4 ● Prepare the chess board hardware

(LEDs, wire grid, mux

connections)

● Design the initial FSM functionalities

Nov 11 ● Finish the hardware. Work on

Module 1 – detection of figures

● Implement an FSM that tracks figures

given the occupied squares of the board.

Nov 18 ● Work on Module 4 – Displaying

of the movements of the

opponent.

● UART communication

● Add constraints to the movements to the

FSM.

● Convert the movements to appropriate

encodings that will be sent to the

computer.

Nov 25 Integration of the UART communication, Modules 1 and 4 and the game FSM

Dec 2 Test the board, game logic, edge cases. Add on screen game state. (Add VGA output of

the game progress)

	ChessAI
	The Chess Board
	The Chess Board
	The Chess Board
	The Chess Board – Figure detection
	Chess Game FSM (Example binary)
	Chess Game FSM (Example decision tree)
	Chess Game FSM
	Chess Game FSM (Challenges)
	Chess Board FSM Python Chess AI
	Communicating with python-chess
	The Chess Board – Figure Movement Indication
	Block Diagram
	Block Diagram
	Block Diagram

