
FPGA Field Oriented Control

Jackson Gray, Aaron Yeiser

Brushless motors
are cool and
controlling them
properly is hard

● Brushless motors are three phase synchronous
motors that need active commutation.

● Simple controllers exist; do block
commutation---behavior similar to brushed
motor commutation
○ Usually no current feedback is used

● Better controllers feed sinusoidal currents to the
three phases
○ This requires current sensors, well-designed

power electronics, and a low latency controller
○ The dominant control method used here is field

oriented control, or FOC

● Low inductance motors can yield higher powers
at high RPM, but may require a very fast
switching inverter, which would require a very
fast, low latency control loop.

● Implementing FOC in hardware is useful for
miniaturization, smaller motors which running at
higher rpms can be quite difficult to control,
requiring faster control loops.

FOC overview
● An advanced control strategy for

high performance 3-phase brushless
motor drives.

● Abstracts the three phase currents
into Q and D fields, relative to the
rotor position.

● Objective: regulate a set Q and D to
their setpoints, which in turn results
in magnetic field being applied to the
rotor with some amount of phase
advanced.

● Torque is primarily produced by the
Q axis.

● Depending on the motor geometry, D
axis current may also produce
reluctance torque.

● Useful for a variety of three phase
synchronous motors.

Clark/Park
transforms

● Clark transform: Converts three phase currents
to two equivalent orthogonal currents (alpha
and beta)
○ Mathematically equivalent but much easier to

work with
○ Works very nicely when phase currents sum to

zero

● Park transform: rotate alpha and beta currents
backwards by the motor phase angle
○ Direct and Quadrature currents
○ These roughly correspond to field strength inside

the motor and torque

● Inverse Clark/Park transforms exist to convert
D/Q commands to three phase motor
commands

Space Vector PWM ● PWM switching method optimized for driving
three phase motors and minimizing switching

● Uses the fact that holding all phases high is
equivalent to holding all phases low

Hardware
● Inverter: Gen 2 Prius inverter

module
○ 500V and 600 total phase amps
○ IGBT based
○ Fully isolated gate drive and current

sense amplification
● Motor: Hyundai sonata Hybrid

Starter-Generator (HSG) motor
○ 115 N-m, 40 kW
○ ~15,000 RPM
○ Integrated variable reluctance

resolver
● FPGA: CMOD A7-35T

○ A miniature Artix-7 Dev board
● Our hardware:

○ Motherboard to interface the
inverter with an FPGA.

○ Resolver decoder board, to excite and
observe the resolver.

Inverter
=> Phase A/B/C Control
<= Phase A/B Current

Power Bus <=
Motor Phases A/B/C =>

Motor
=> Motor A/B/C Phases

Resolver coils =>
Chassis Ground =>

Thermistor =>

Clark/Park
=> Phase A/B/C Current
=> Phase Angle

Q/D current =>

SVPWM
=> Phase A/B/C Voltage

Phase A/B/C Control =>
Loop Start Trigger =>

Inverse Clark/Park
=> Q/D voltage
=> Phase Angle

Phase A/B/C voltage =>

PI controller
=> Current

Voltage =>

Resolver Decoder
Exciter Coil =>

Sense A/B Coils <=
<= Serial Interface
<= Fault States

ADC Interface
=> Serial bus
=> SVPWM timing
<= ADC enable

ADC output =>

Motor emulator
=> Rotation speed
=> Phase A/B/C voltage

Phase A/B/C current =>
Phase angle =>

Motherboard
Provides interfaces between
fpga and hardware.

Manages logic power
distribution, logic level
shifting, and Analog to
Digital conversion.

Spi Module (n=12-bit)
[Resolver Decoder]
=> Word Send reg
<= Word Received reg

SCLK =>
MOSI =>
MISO <=

SS =>

Resolver Demultiplexer
<= Resolver Position
<= Resolver Velocity
<= Data Update flags

Word Received from SPI <=

Position Generator
<= Motor Theta

 Resolver Position <=
Resolver Velocity <=

Data Update Flags <=

Put some details
on mobo stuff here
=> Phase A/B/C Voltage

Phase A/B/C Control =>
Loop Start Trigger =>

Todo: add more detail about bus widths,

Goals ● Base goal
○ Simulated motor model works as desired

● Minimum viable product
○ A motor controller that works with a real motor

● Stretch goal(s) [pick one or more]
○ %Max-Torque to D/Q mapping table
○ Sensorless control
○ Servo control
○ USB interface

Schedule

● 11/11-11/18
○ Implement FOC control loop blocks and

testbenches
○ Finish motherboard PCB design
○ Finish characterizing Prius inverter block

● 11/18-11/25
○ Send out PCB’s and order parts
○ Write motor simulator testbench
○ Put blocks together and simulate the motor
○ Write serial interface blocks for ADCs/resolver
○ Assemble the motherboard and resolver board,

test hardware.
○ Start testing with real motor

● 11/25-12/2
○ Test current loop, command Q or D currents on

stationary motor.
○ Integrate resolver feedback; get the real motor to

spin.
○ Observe strange bugs and misbehaviors, attempt

to fix them.
● 12/2-12/7

○ Start implementing and testing Bonus features.
○ Attempt to tidy up the physical packaging, mount

onto vehicle, achieve record for fastest 6.111
project.

○ Checkoffs.
○ Demos

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

