
Recitation 14 — GFS

Overview
● Goal of GFS: Shared file system spread across hundreds or thousands of physical

machines
● Adds complexity: replication, many users writing to same files, huge files.
● Relies on some assumptions: mainly append-only workloads, read-only after write

○ Means complicated consistency models and atomicity guarantees aren’t
necessary

Components
● Controller (“master” in paper): has an organizational/control role
● Chunk servers: where the data actually lives
● Chunks: large pieces of data

How it works
Figures 1 and 2 of the GFS paper are some of the best figures you will see in any paper in
6.033. Take inspiration for your design project system diagrams!

● Reads:
○ Client sends file name + offset within file to controller
○ Controller replies with set of servers that have that chunk
○ Client asks nearest chunk server

● Writes:
○ Client asks controller where to store the file; controller responds
○ Client pushes data to the chunk server that’s closest, which forwards data along

to the others
○ Primary chunkserver applies serial numbers

● Notice that the controller handles control traffic/metadata type things. Not moving real file
data.

Discussion
● Huge sequential reads and writes, appends work well in GFS
● 3x replication lets it be quite fault tolerant (think about this more as you read

MapReduce)
● The controller is a single point of failure, though it can also be replicated, and is quite

lightweight
○ Also remember: the probability of a specific machine failing is relatively low. GFS

is addressing the problem that the probability of some machine failing — and
thus us losing data — is higher.


