
6.033 Spring 2009 

Robert Morris 
Lecture 7 
Threads  



Remember: Send 

send(p, m): 
 while true: 

        acquire(p.lock) 
     if p.in - p.out < N: 
        p.buffer[p.in mod N]  m 
        p.in  p.in + 1 

           release(p.lock) 
        return 

        release(p.lock) 



Send / Receive with Yield 

send(p, m): 
 while true: 

        if something to do: do it 
     else: yield() 

receive(p): 
 while true: 

        if something to do: do it 
     else: yield() 



yield(): 
 acquire(t_lock) 
 id = cpus[CPU()].thread 
 threads[id].state = RUNNABLE 
 threads[id].sp = SP 

 do: 
   id = (id + 1) mod N 
 while threads[id].state != RUNNABLE 

 threads[id].state = RUNNING 
 SP = threads[id].sp 
 cpus[CPU()].thread = id 
 release(t_lock) 

suspend 

resume 

version 1 



Send with Yield 

send(p, m): 
 while true: 

       acquire(p.lock) 
     if p.in - p.out < N: 
         p.buffer[p.in mod N]  m 
         p.in  p.in + 1 

            release(p.lock) 
         return 

        release(p.lock) 
     yield() 



send(p, m): 
 acquire(p.lock) 
 while p.in - p.out == N: 
    wait(p.notfull, p.lock) 
 p.buffer[p.in mod N]  m 
 p.in  p.in + 1 
 notify(p.notempty) 
 release(p.lock) 

Send with Wait/Notify 



wait(cvar, lock): 
 acquire(t_lock) 
 release(lock) 
 threads[id].cvar = cvar 
 threads[id].state = WAITING 
 yield() 

   release(t_lock) 
 acquire(lock) 



wait(cvar, lock): 
 acquire(t_lock) 
 release(lock) 
 threads[id].cvar = cvar 
 threads[id].state = WAITING 
 yield() 

   release(t_lock) 
 acquire(lock) 

notify(cvar): 
 acquire(t_lock) 
 for i = 0 to N-1: 
   if threads[i].cvar == cvar and 
            threads[i].state == WAITING: 

          threads[i].state = RUNNABLE 
   release(t_lock) 



yield(): 
 acquire(t_lock) 
 id = cpus[CPU()].thread 
 threads[id].state = RUNNABLE 
 threads[id].sp = SP 

 do: 
   id = (id + 1) mod N 
 while threads[id].state != RUNNABLE 

 threads[id].state = RUNNING 
 SP = threads[id].sp 
 cpus[CPU()].thread = id 
 release(t_lock) 

version 1 

idle 
loop 



yield(): 
 id = cpus[CPU()].thread 
 threads[id].sp = SP 
 SP = cpus[CPU()].stack 

 do: 
   id = (id + 1) mod N 

    release(t_lock) 
  acquire(t_lock) 

 while threads[id].state != RUNNABLE 

 threads[id].state = RUNNING 
 SP = threads[id].sp 
 cpus[CPU()].thread = id 

version 2 

idle 
loop 


