g 6.033 Spring 2009

Robert Morris
Lecture 7
Threads



Remember: Send

send(p, m):
while true:
acquire(p.lock)
if p.in - p.out < N:
n.buffer[p.in mod N] € m
D.In €< p.n + 1
release(p.lock)
return
release(p.lock)




Send / Receive with Yield

send(p, m):
while true:
if something to do: do it
else: yield()

receive(p):
while true:
if something to do: do it
else: yield()



version 1

yield():
acquire(t_lock)

id = cpus[CPU()].thread
threads[id].state = RUNNABLE suspend
threads[id].sp = SP

do:
id =(id+ 1) mod N
while threads[id].state = RUNNABLE

threads[id].state = RUNNING

SP = threads[id].sp resume
cpus[CPU()].thread = id
release(t_lock)



Send with Yield

send(p, m):
while true:
acquire(p.lock)
if p.in - p.out < N:
p.buffer[p.in mod N] € m

p.In < p.in + 1
release(p.lock)
return

release(p.lock)
vield()



Send with Wait/Notify

send(p, m):
acquire(p.lock)
while p.in - p.out =

wait(p.notfull, p. Iock)

p.buffer[p.in mod N] € m
p.In < p.in + 1
notify(p.notempty)
release(p.lock)



wait(cvar, lock):
acquire(t_lock)
release(lock)
threads[id].cvar = cvar
threads|[id].state = WAITING
yield()
release(t_lock)
acquire(lock)



wait(cvar, lock):
acquire(t_lock)
release(lock)
threads[id].cvar = cvar
threads[id].state = WAITING

yield()
release(t_lock)
acquire(lock)

notify(cvar):
acquire(t_lock)
fori =0 to N-1:
if threads|i].cvar == cvar and
threads]i].state == WAITING:
threads]i].state = RUNNABLE

release(t_lock)



version 1

yield():

acquire(t_lock)

id = cpus[CPU()].thread
threads[id].state = RUNNABLE
threads[id].sp = SP

ao. |
id = (id + 1) mod N :G”e
while threads[id].state != RUNNABLE | 'O°P

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id
release(t_lock)



version 2

yield():
id = cpus[CPU()].thread
threads[id].sp = SP
SP = cpus[CPU()].stack

do: 3
id =(id + 1) mod N _
release(t_lock) > idle
acquire(t_lock) loop
while threads[id].state '= RUNNABLE _

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id



