
Fault-tolerant Computing

Frans Kaashoek
6.033 Spring 2007

April 4, 2007

Where are we in 6.033?

•  Modularity to control complexity
•  Names are the glue to compose modules

•  Strong form of modularity: client/server
•  Limit propagation of errors

•  Implementations of client/server:
•  In a single computer using virtualization
•  In a network using protocols

•  Compose clients and services using names
•  DNS

How to respond to failures?

•  Failures are contained; they don’t propagate
•  Benevolent failures

•  Can we do better?
•  Keep computing despite failures?
•  Defend against malicious failures (attacks)?

•  Rest of semester: handle these “failures”
•  Fault-tolerant computing
•  Computer security

Fault-tolerant computing

• General introduction: today
• Replication/Redundancy

•  The hard case: transactions
• updating permanent data in the presence

of concurrent actions and failures

•  Replication revisited: consistency

A fatal exception 0E has occurred at 0028:C00068F8 in PPT.EXE<01> +
000059F8. The current application will be terminated.

* Press any key to terminate the application.
* Press CTRL+ALT+DEL to restart your computer. You will
 lose any unsaved information in all applications.

 Press any key to continue

Windows

Availability in practice

•  Carrier airlines (2002 FAA fact book)
•  41 accidents, 6.7M departures
  99.9993% availability

•  911 Phone service (1993 NRIC report)
•  29 minutes per line per year
  99.994%

•  Standard phone service (various sources)
•  53+ minutes per line per year
  99.99+%

•  End-to-end Internet Availability
  95% - 99.6%

Disk failure conditional probability distribution

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn
out

Bathtub curve

Human Mortality
Rates

(US, 1999)

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org

Fail-fast disk

failfast_get (data, sn) {

 get (s, sn);

 if (checksum(s.data) = s.cksum) {

 data ← s.data;

 return OK;

 } else {

 return BAD;

 }

}

Careful disk

careful_get (data, sn) {

 r ← 0;

 while (r < 10) {

 r ← failfast_get (data, sn);

 if (r = OK) return OK;

 r++;

 }

 return BAD;

}

Durable disk (RAID 1)

durable_get (data, sn) {

 r ← disk1.careful_get (data, sn);

 if (r = OK) return OK;

 r ← disk2.careful_get (data, sn);

 signal(repair disk1);

 return r;

}

