
L13: Sharing in network systems 

Dina Katabi 
6.033 Spring 2007 

http://web.mit.edu/6.033 
Some slides are from lectures by 
Nick Mckeown, Ion Stoica, Frans 

Kaashoek, Hari Balakrishnan, Sam 
Madden, and Robert Morris 



Where is sharing happening? 
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This Lecture 

•  Problems: 
• Sharing server 
• Sharing network 

•  Solution:  
• Set the window size carefully 
• Sharing server: flow control 
• Sharing the network: congestin control 



Sliding Window 

•  The window advances/slides upon the arrival of an 
ack 

•  The sender sends only packets in the window 
•  Receiver usually sends cumulative acks 

•  i.e., receiver acks the next expected in-order packet  
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In this example, the receiver sent cumulative acks, but the same 
behavior happens if the receiver acks the received sequence number 



What is the right window size? 

•  The window limits how fast the sender 
sends 

•  Two mechanisms control the window: 
• Flow control  
• Congestion control 



Flow Control 

•  The receiver may be slow in processing 
the packets  receiver is a bottleneck 

•  To prevent the sender form 
overwhelming the receiver, the 
receiver tells the sender the maximum 
number of packets it can buffer fwnd 

•  Sender sets W ≤ fwnd 



How to set fwnd? 
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•  Fwnd = B x RTT 
• Size of queue 

substitute for B 
•  Adapts to 

• RTT changes 
• B changes 

•  “self-pacing” 



Sharing the network 

How do you manage the resources in a huge 
system like the Internet, where users with 
different interests share the same resources? 

Difficult because of: 
•  Size 

•  Millions of users, links, routers 

•  Heterogeneity 
•  bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s  
•  latency: 50us (LAN), 133ms (wired), 1s (satellite), 260s 

(Mars) 



Congestion 
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  Sources share links,               
and buffer space 

  Why a problem? 
  Sources are unaware of current state of resource 
  Sources are unaware of each other 

  Manifestations: 
  Lost packets (buffer overflow at routers) 
  Long delays (queuing in router buffers) 
  Long delays may lead to retransmissions, which lead to more 

packets…. 



Danger: Congestion Collapse 
Increase in input traffic leads to decrease in useful work 
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  Causes of Congestion Collapse 
  Retransmissions introduce duplicate packets 
  Duplicate packets consume resources wasting link capacity 



Example: old TCP implementations 

Fwnd 2 

Fwnd 1 

  Long haul network (i.e., large RTT) 

  Router drops some of  TCP 2’s fwnd packets 

  Each discard packet will result in timeout 
  At timeout TCP 2 resends complete window 

  Cumulative ACK, timeouts fire off at “same” time 
  Blizzard of retransmissions can result in congestion collapse 

  Insufficiently adaptive timeout algorithm made things worse 



What can be done in general? 

•  Avoid congestion: 
•  Increase network resources 

•  But demands will increase too! 
•  Admission Control & Scheduling 

•  Used in telephone networks 
•  Hard in the Internet because can’t model traffic well 

•  Perhaps combined with Pricing 
•  senders pay more in times of congestion 

•  Congestion control:  
•  Ask the sources to slow down; But how? 

•  How do the sources learn of congestion? 
•  What is the correct window? 
•  How to adapt the window as the level of congestion 

changes? 



How do senders learn of congestion? 

Potential options: 
•  Router sends a Source Quench to the sender  
•  Router flags the packets indicating congestion 
•  Router drops packets when congestion occurs 

•  Sender learns about the drop because it notices the 
lack of ack 

•  Sender adjusts window 



•  Define a congestion control window cwnd 
•  Sender’s window is set to W = min (fwnd, 

cwnd)  
•  Simple heuristic to find cwnd: 

•  Sender increases its cwnd slowly until it sees a 
drop 

•  Upon a drop, sender decreases its cwnd quickly 
to react to congestion 

•  Sender increases again slowly  
•  No changes to protocol necessary! 

Case study: current TCP 



TCP Increase/decrease algorithm  

• AIMD:  
• Additive Increase Multiplicative Decrease  

• Every RTT: 
   No drop:   cwnd = cwnd + 1 
    drop:     cwnd = cwnd /2 
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TCP “Slow Start” 
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  How to set the initial cwnd? 
  At the beginning of a connection, increase exponentially 

 Every RTT, double cwnd  
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Fairness? 

•  No! 
•  Applications don’t have to use TCP 
•  Use multiple TCP connections 



Summary 

•  Controlling complexity in network systems 
•  Layering 
•  Interesting division of labors based on E2E principle 
•  Case study: Internet 

•  Interesting problems and techniques 
•  Packets 
•  Protocols 
•  … 

•  Client-server implementation 

•  Next: Application-level reliability and security 


