
L13: Sharing in network systems

Dina Katabi
6.033 Spring 2007

http://web.mit.edu/6.033
Some slides are from lectures by
Nick Mckeown, Ion Stoica, Frans

Kaashoek, Hari Balakrishnan, Sam
Madden, and Robert Morris

Where is sharing happening?

stub stub

Network Layer

Link Layer

presentation Layer

End-to-end layer

RPC RPC

H D

H D

H D

H D H D

H D

Header Data Header Data

client server

This Lecture

•  Problems:
• Sharing server
• Sharing network

•  Solution:
• Set the window size carefully
• Sharing server: flow control
• Sharing the network: congestin control

Sliding Window

•  The window advances/slides upon the arrival of an
ack

•  The sender sends only packets in the window
•  Receiver usually sends cumulative acks

•  i.e., receiver acks the next expected in-order packet

Window Size

Outstanding
Un-ack’d pkts

Packets OK
to send

Packets not OK
to send yet

Packets ACK’d

Src

Rcvr

window = 1-5

1 2 3 4 5

p1

x

Src

Rcvr

window = 2-6

1 2 3 4 5

p1

a2

x

6

Src

window = 2-6

1 2 3 4 5

p1

a2

x

6

a2

p3
Rcvr

Src

window = 2-6

1 2 3 4 5

p1

a2

x

6

a2

p3

a2

p4

a2

p6

a2

p5

Timeout

2

a7

p2
Rcvr

Src

window = 7-11

1 2 3 4 5

p1

a2

x

6

a2

p3

a2

p4

a2

p6

a2

p5

Timeout

2

a7

p2

7 8 9 10 11

Rcvr

In this example, the receiver sent cumulative acks, but the same
behavior happens if the receiver acks the received sequence number

What is the right window size?

•  The window limits how fast the sender
sends

•  Two mechanisms control the window:
• Flow control
• Congestion control

Flow Control

•  The receiver may be slow in processing
the packets  receiver is a bottleneck

•  To prevent the sender form
overwhelming the receiver, the
receiver tells the sender the maximum
number of packets it can buffer fwnd

•  Sender sets W ≤ fwnd

How to set fwnd?

App App

B1 B2

TCP

 Multiple applications run on the same machine but use different ports

P1 D P2 D

P2 D H

P1 D H

network

•  Fwnd = B x RTT
• Size of queue

substitute for B
•  Adapts to

• RTT changes
• B changes

•  “self-pacing”

Sharing the network

How do you manage the resources in a huge
system like the Internet, where users with
different interests share the same resources?

Difficult because of:
•  Size

•  Millions of users, links, routers

•  Heterogeneity
•  bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s
•  latency: 50us (LAN), 133ms (wired), 1s (satellite), 260s

(Mars)

Congestion
S1

S2

R1 D

10Mb/s

2Mb/s

100Mb/s
S1

S2

  Sources share links,
and buffer space

  Why a problem?
  Sources are unaware of current state of resource
  Sources are unaware of each other

  Manifestations:
  Lost packets (buffer overflow at routers)
  Long delays (queuing in router buffers)
  Long delays may lead to retransmissions, which lead to more

packets….

Danger: Congestion Collapse
Increase in input traffic leads to decrease in useful work

Input traffic

Th
ro

ug
hp

ut

cliff
Congestion
Collapse

knee

Latency

  Causes of Congestion Collapse
  Retransmissions introduce duplicate packets
  Duplicate packets consume resources wasting link capacity

Example: old TCP implementations

Fwnd 2

Fwnd 1

  Long haul network (i.e., large RTT)

  Router drops some of TCP 2’s fwnd packets

  Each discard packet will result in timeout
  At timeout TCP 2 resends complete window

  Cumulative ACK, timeouts fire off at “same” time
  Blizzard of retransmissions can result in congestion collapse

  Insufficiently adaptive timeout algorithm made things worse

What can be done in general?

•  Avoid congestion:
•  Increase network resources

•  But demands will increase too!
•  Admission Control & Scheduling

•  Used in telephone networks
•  Hard in the Internet because can’t model traffic well

•  Perhaps combined with Pricing
•  senders pay more in times of congestion

•  Congestion control:
•  Ask the sources to slow down; But how?

•  How do the sources learn of congestion?
•  What is the correct window?
•  How to adapt the window as the level of congestion

changes?

How do senders learn of congestion?

Potential options:
•  Router sends a Source Quench to the sender
•  Router flags the packets indicating congestion
•  Router drops packets when congestion occurs

•  Sender learns about the drop because it notices the
lack of ack

•  Sender adjusts window

•  Define a congestion control window cwnd
•  Sender’s window is set to W = min (fwnd,

cwnd)
•  Simple heuristic to find cwnd:

•  Sender increases its cwnd slowly until it sees a
drop

•  Upon a drop, sender decreases its cwnd quickly
to react to congestion

•  Sender increases again slowly
•  No changes to protocol necessary!

Case study: current TCP

TCP Increase/decrease algorithm

• AIMD:
• Additive Increase Multiplicative Decrease

• Every RTT:
 No drop: cwnd = cwnd + 1
 drop: cwnd = cwnd /2

Additive Increase

D A

Src

Rcvr

cwnd = 1
cwnd += 1
cwnd = 2

D D A A

cwnd = 3

D D A A D A

cwnd = 4

TCP AIMD

Time

Cwnd

Grab capacity
again

 Halve Cwnd

Timeout because
of a packet loss

desired
cwnd

Need the queue to absorb these saw-tooth oscillations

TCP “Slow Start”

D A D D A A D D

A A

D

A

Src

Rcvr

D

A

1 2 4 8

A A A A

  How to set the initial cwnd?
  At the beginning of a connection, increase exponentially

 Every RTT, double cwnd

Slow Start + AIMD

Time

Cwnd

Slow start

Additive
increase

Multiplicative
decrease

 Timeout

Fairness?

•  No!
•  Applications don’t have to use TCP
•  Use multiple TCP connections

Summary

•  Controlling complexity in network systems
•  Layering
•  Interesting division of labors based on E2E principle
•  Case study: Internet

•  Interesting problems and techniques
•  Packets
•  Protocols
•  …

•  Client-server implementation

•  Next: Application-level reliability and security

