L10: Protocols and Layering

Dina Katabi 6.033 Spring 2007

http://web.mit.edu/6.033

Some slides are from lectures by Nick Mckeown, Ion Stoica, Frans Kaashoek, Hari Balakrishnan, Sam Madden, and Robert Morris

Plan for studying network systems

Sharing and challenges	7.A	Ethernet
Layering	7.B+C	End-to-end
Routing	7.D	Internet
End-to-end reliability	7.E	Network file system
Congestion control	7.F	NATs

Last lecture: challenges

- Economical:
 - Universality
 - Topology, Sharing, Utilization
- Organizational
 - Routing, Addressing, Packets, Delay
 - Best-effort contract
- Physical
 - Errors, speed of light, wide-range of parameters

Network Design

Problem

How do we organize design of a network?
Solution

layering of protocols

Layering of protocols

- Layering is a particular form of abstraction
- The system is broken into a vertical hierarchy of protocols
- The service provided by one layer is based solely on the service provided by layer below

Layering tools for nesting

- Each layer adds/strips off its own header
- Each layer may split up higher-level data
- Each layer multiplexes multiple higher layers
- Each layer is (mostly) transparent to higher layers

Layering: The Internet

The 4-layer Internet model

Multiplexing in the Internet

- Many applications, transports, and link protocols
- All use IP at the network layer

Where are these layers?

- Link and network layers are implemented everywhere
- The end-to-end layer (i.e., transport and application) is implemented only at hosts

Clever usages of layering

- Nesting layers to the extreme: tunneling
 - Run link layer over TCP (Virtual Private Network)
- Router uses TCP as transport for routing protocol (e.g., BGP)

• ...

HTTP TCP IP ssh TCP

• • •

Link Layer

Problem:

Deliver data from one end of the link to the other

Need to address:

- Bits → Analog → Bits
- Framing
- Errors
- Medium Access Control (The Ethernet Paper)

Manchester encoding

- Each bit is a transition
- Allows the receiver to sync to the sender's clock

Framing

- Receiver needs to detect the beginning and the end of a frame
- Use special bit-pattern to separate frames
 - E.g., pattern could be 1111111 (7 ones)
- Bit stuffing is used to ensure that a special pattern does not occur in the data
 - If pattern is 1111111 → Whenever the sender sees a sequence of 6 ones in the data, it inserts a zero (reverse this operation at receiver)

Error Handling

- Detection:
 - Use error detection codes, which add some redundancy to allow detecting errors
- When errors are detected
 - Correction:
 - Some codes allow for correction
 - Retransmition:
 - Can have the link layer retransmit the frame (rare)
 - Discard:
 - Most link layers just discard the frame and rely on higher layers to retransmit

This Lecture

 To cope with the complexity, the network architecture is organized into layers

 The link layer delivers data between two machines that are directly connected using a link