
Complexity revisited:
learning from failures

Frans Kaashoek and Robert Morris
Lec 26 --- Last one!

5/13/09
Credit: Jerry Saltzer

6.033 in one slide

•  Client/server
•  RPC
•  File abstraction
•  Virtual memory
•  Threads
•  Coordination
•  Protocol layering
•  Routing protocols

•  Reliable packet delivery
•  Names
•  Atomicity
•  Transactions
•  Replication
•  Sign/Verify
•  Encrypt/Decrypt
•  Authorization

Case studies of successful systems: UNIX, X Windows,
MapReduce, Ethernet, Internet, WWW, RAID, DNS, ….

Principles: End-to-end argument, Modularity, …

hidden

•  we showed principles, techniques, cases
•  result of years of experience
•  helpful -- yet far from sufficient!
•  crucial org/mgmt techniques
•  not 033 topic, but closely related
•  illustrate via failure: memorable, educational

Today:
Why do systems fail anyway?

•  Complexity has no hard edge
•  Learning from failures: common problems
•  Fighting back: avoiding the problems
•  Final admonition

Too many objectives
•  Ease of use
•  Availability
•  Scalability
•  Flexibility
•  Mobility
•  Security

•  Networked
•  Maintainability
•  Performance
•  Cheap
•  ….

But no systematic methods to synthesize
systems to meet objectives

Many objectives
+

Few Methods
+

High d(technology)/dt
=

High risk of failure

The tarpit

[F. Brooks, Mythical Man Month]

Complexity: no hard edge

•  When is it too much?

objectives/features/performance

complexity

hidden

•  this will happen to your projects
•  you must notice in time!
•  but how?
•  Experience!

Learn from failure!

“The concept of failure
is central to design
process, and it is by
thinking in terms of
obviating failure that
successful designs are
achieved…”
[Henry Petroski]

hidden
•  quote from neat book about failure
•  engineering a very human undertaking
•  all projects have problems, design flaws, bugs

–  progress comes by taking risks  failure

•  good engineering about anticipating failure
–  understand the past, learn from it
–  and coping: keeping small failures small

Keep digging principle

•  Complex systems systems fail for
complex reasons
– Find the cause …
– Find a second cause …
– Keep looking …
– Find the mind-set.

[Petroski, Design Paradigms]

hidden
•  NOT the real answer:

–  “there was a bug”
–  “the operator made an error”

•  e.g. Therac-25 and ATM
–  lack of understanding of real problems
–  too little testing, training
–  no feedback into future versions
–  broken organization, management, oversight

•  let’s look at some big failures

Try 1: Meidum (52° angle)

Try 2: Dashur/Bent

(52° to 43.5° angle)

Try 3: Red pyramid (right angle: 43°)

Pharaoh Sneferu’s Pyramid project

hidden
•  early example of learning from failure at large scale
•  sneferu built three pyramids!
•  meidum pyramid

–  originally stepped, filled later, made it more “true”
–  BUT facing fell off during sneferu’s lifetime

•  bent pyramid
–  angle change due to failure of meidum pyramid?

•  red pyramid
–  starts at 43, less complex internally
–  successful prototype for later “true” pyramids

•  ultimately didn’t meet big requirement: eternal rest

United Airlines/Univac

•  Automated reservations, ticketing, flight
scheduling, fuel delivery, kitchens, and
general administration

•  Started 1966, target 1968, scrapped
1970, spent $50M

•  Second-system effect (First: SABRE)
(Burroughs/TWA repeat)

hidden
•  AA’s SABRE (1964?) one of first big “on-line” systems

–  IBM had prior experience w/ SAGE air defense
–  SABRE tightly focused on seat reservation
–  SABRE gave AA a crushing advantage

•  United/Univac had no comparable on-line experience
–  but wanted something vastly more capable than SABRE!

CONFIRM

•  Hilton, Marriott, Budget, American Airlines
•  Linked air + car + hotel reservations
•  Started 1988, scrapped 1992, $125M
•  Second system
•  DB integration problems
•  DB not crash recoverable
•  Bad-news diode

[Communications of the ACM 1994]

hidden

•  SABRE successful -> second system!
•  DB integration problems

–  reservations vs yield mgmt (histories &c)
•  DB not crash-recoverable
•  persistent hiding of schedule slips

– and 2x under-estimate of running costs
•  big consortium, loose oversight

Advanced Automation System
•  US Federal Aviation Administration
•  To replace 1972 computerized system
•  Real-time nation-wide route planning
•  Started 1982, scrapped 1994 ($6B)
•  Big ambitions
•  Changing ideas about UI
•  12 years -> evolving requirements, tech
•  12 years -> culture of not finishing
•  Big -> congressional meddling

London Ambulance Service
•  Ambulance dispatching
•  Started 1991, scrapped in 1992

–  20 lives lost in 2 days

•  No testing/overlap with old system
•  Required big changes in procedure
•  Users not consulted during design
•  Unrealistic schedule (5 months)
•  Perhaps first of kind, no experience

[Report of the Inquiry Into The London Ambulance Service 1993]

hidden

•  a neat system: loc track, optimized dispatch
•  not tested, little training, changed procedures
•  congestion collapse on first day

–  inaccurate/old status / position
–  suboptimal amb chosen, two sent, &c
–  so lower capacity, longer delays
–  people called multiple times
–  repeat dispatches, even less efficient
–  no good plan for reverting to backup system

•  but real issues were mgmt/planning, not tech
•  100% manual -> 100% auto in one leap

IBM Workplace OS
•  One microkernel O/S for all IBM products

–  PDAs / desktop / servers / supercomputers
–  “personalities” for OS/2, AIX, OS/400, Windows
–  x86, new PowerPC, ARM

•  Started in 1991, scrapped 1996 ($2B)
•  factoring out common services too hard
•  PPC needed new OS, new OS needed PPC

–  but PPC was late, buggy, and slow

•  IBM division per personality, bad cooperation
[Fleisch HotOS 1997]

hidden
•  ambitious / cool idea
•  binary compatibility with existing windows &c apps

–  binary translation, APIs

•  each aspect well within reach by itself
•  common services too hard

–  e.g. pull virt mem out of Windows &c into service
–  too hard to get personalities to agree on services

•  OS needed PPC: otherwise too slow
•  PPC needed OS: otherwise incompatible
•  maybe virtual machines were the right answer
•  caused IBM to give up idea of building its own O/Ss

Many more
•  Portland, Oregan, Water Bureau, 30M, 2002
•  Washington D.C., Payroll system, 34M 2002
•  Southwick air traffic control system $1.6B 2002
•  Sobey’s grocery inventory, 50M, 2002
•  King’s County financial mgmt system, 38M, 2000)
•  Australian submarine control system, 100M, 1999
•  California lottery system, 52M
•  Hamburg police computer system, 70M, 1998
•  Kuala Lumpur total airport management system, $200M, 1998
•  UK Dept. of Employment tracking, $72M, 1994
•  Bank of America Masternet accounting system, $83M, 1988,
•  FBI virtual case, 2004.
•  FBI Sentinel case management software, 2006.

Recurring problems
•  Excessive generality and ambition
•  Second-system effect
•  Bad modularity
•  Inexperience (or ignoring experienced advice)
•  Bad-news diode
•  Mythical Man Month

Fighting back:
control novelty

•  Only one big new idea at a time
•  Re-use existing components
•  Why it’s hard to say “no”

–  Second-system effect
–  Technology is better
–  Idea worked in isolation
–  Marketing pressure

•  Hire strong, knowledgeable management

Fighting back:
adopt sweeping simplifications

•  Processor, Memory, Communication
•  Dedicated servers
•  Best-effort network
•  End-to-end error control
•  Atomic transactions
•  Authentication, confidentiality

Fighting back:
design for iteration,
iterate the design

•  Get something simple working soon
– Find out what the real problems are

•  Structure project to allow feedback
– e.g. deploy in phases

•  Series of small projects

“Every successful complex system is found to have evolved
from a successful simple system” – John Gall

Fighting back:
find bad ideas fast

•  Question requirements
–  “And ferry itself across the Atlantic” [LHX light

attack helicoper]

•  Try ideas out, but don’t hesitate to scrap
•  Have a design loop

The design loop

•  Find flaws fast!

Initial

design
 Draft design
 coding
 testing
 deployed

months
min
 hours
 days
 weeks

Fighting back:
find flaws fast

•  Plan and simulate
–  Boeing 777 CAD, F-16 flight sim

•  Design reviews, coding reviews, regression
tests, daily/hourly builds, performance
measurements

•  Design the feedback system:
–  Alpha and beta tests
–  Incentives, not penalties, for reporting errors

Fighting back:
conceptual integrity

•  One mind controls the design
–  Macintosh, Visicalc, UNIX, Linux

•  Good abstractions/modules reduce O(n2) effects
–  In human organization as much as software
–  Small focused teams

•  Good esthetics yields more successful systems
–  Parsimonious, Orthogonal, Elegant, Readable, …

•  Best designers much better than average
–  Find and exploit them

Summary
•  Principles that help avoid failure

–  Limit novelty
–  Adopt sweeping simplifications
–  Get something simple working soon
–  Iteratively add capability
–  Incentives for reporting errors
–  Descope early
–  Give control to (and keep it in) a small design team

•  Strong outside pressures to violate these principles
–  Need strong knowledgeable managers

Admonition

Don’t design future failure case studies

Close the 6.033 design loop

https://sixweb.mit.edu/student/evaluate/6.033-s2009

Or https://sixweb.mit.edu

