Complexity revisited:
learning from failures

Frans Kaashoek and Robert Morris
Lec 26 --- Last one!
5/13/09
Credit: Jerry Saltzer

6.033 in one slide

Principles: End-to-end argument, Modularity, ...

Client/server °
RPC °
File abstraction .
Virtual memory °
Threads .

Coordination °
Protocol layering .
Routing protocols .

Reliable packet delivery
Names

Atomicity

Transactions
Replication

Sign/Verify
Encrypt/Decrypt
Authorization

Case studies of successful systems: UNIX, X Windows,
MapReduce, Ethernet, Internet, WWW, RAID, DNS,

hidden

we showed principles, techniques, cases
result of years of experience

helpful -- yet far from sufficient!

crucial org/mgmt techniques

not 033 topic, but closely related

illustrate via failure: memorable, educational

Today:
Why do systems fail anyway?

e Complexity has no hard edge

e Learning from failures: common problems
e Fighting back: avoiding the problems

e Final admonition

Too many objectives

e Ease of use e Networked

o Availability e Maintainability
o Scalability e Performance
e Flexibility e Cheap

e Mobility ° ...

e Security

But no systematic methods to synthesize
systems to meet objectives

Many objectives
|

Few Methods
|

High d(technology)/dt

High risk of failure

The tarpit

- ._:.—._ -~ = = — -

[F. Brooks, Mythical Man Month]

Complexity: no hard edge

complexity

objectives/features/performance

e When is it too much?

hidden

e this will happen to your project
e you must notice in time!
e but how?

e Experience!

Learn from failure!

“The concept of failure
is central to design
process, and it is by
thinking in terms of
obviating failure that
successful designs are
|} achieved..”
et | [Henry Petroski]
DESIGN

Case Histories of
Error and Judgment
in Engineering

hidden

quote from neat book about failure
engineering a very human undertaking

all projects have problems, design flaws, bugs
— progress comes by taking risks - failure
good engineering about anticipating failure

— understand the past, learn from it
— and coping: keeping small failures small

Keep digging principle

o Complex systems systems fail for
complex reasons

— Find the cause ...

— Find a second cause ...
— Keep looking ...

— Find the mind-set.

[Petroski, Design Paradigms]

hidden

e NOT the real answer:

— “there was a bug”

— “the operator made an error”
e e.g. Therac-25 and ATM

— lack of understanding of real problems

— too little testing, training

— no feedback into future versions

— broken organization, management, oversight
e let’s look at some big failures

Pharaoh Sneferu’s Pyramid project

Try 1: Meidum (52° angle)

Try 2: Dashur/Bent
(52° to 43.5° angle)

Try 3: Red pyramid (right angle: 43°)

hidden

early example of learning from failure at large scale
sneferu built three pyramids!

meidum pyramid
— originally stepped, filled later, made it more “true”
— BUT facing fell off during sneferu’s lifetime

bent pyramid
— angle change due to failure of meidum pyramid?

red pyramid
— starts at 43, less complex internally
— successful prototype for later “true” pyramids

ultimately didnt meet big requirement: eternal rest

United Airlines/Univac

e Automated reservations, ticketing, flight
scheduling, fuel delivery, kitchens, and
general administration

o Started 1966, target 1968, scrapped
1970, spent $50M

e Second-system effect (First: SABRE)
(Burroughs/TWA repeat)

hidden

e AA’s SABRE (19647?) one of first big “on-line” systems
— IBM had prior experience w/ SAGE air defense

— SABRE tightly focused on seat reservation
— SABRE gave AA a crushing advantage

e United/Univac had no comparable on-line experience
— but wanted something vastly more capable than SABRE!

CONFIRM

Hilton, Marriott, Budget, American Airlines
Linked air + car + hotel reservations
Started 1988, scrapped 1992, $125M
Second system
DB integration problems
DB not crash recoverable
Bad-news diode
[Communications of the ACM 1994]

hidden

SABRE successful -> second system!

DB integration problems

— reservations vs yield mgmt (histories &c)
DB not crash-recoverable

persistent hiding of schedule slips

—and 2x under-estimate of running costs
big consortium, loose oversight

Advanced Automation System

e US Federal Aviation Administration

e To replace 1972 computerized system

e Real-time nation-wide route planning

o Started 1982, scrapped 1994 ($6B)

e Big ambitions

e Changing ideas about UI

e 12 years -> evolving requirements, tech
e 12 years -> culture of not finishing

e Big -> congressional meddling

London Ambulance Service

e Ambulance dispatching

e Started 1991, scrapped in 1992
— 20 lives lost in 2 days

o No testing/overlap with old system
e Required big changes in procedure
e Users not consulted during design

e Unrealistic schedule (5 months)

o Perhaps first of kind, no experience
[Report of the Inquiry Into The London Ambulance Service 1993]

hidden

a neat system: loc track, optimized dispatch
not tested, little training, changed procedures

congestion collapse on first day

— inaccurate/old status / position

— suboptimal amb chosen, two sent, &c

— so lower capacity, longer delays

— people called multiple times

— repeat dispatches, even less efficient

— no good plan for reverting to backup system

but real issues were mgmt/planning, not tech
100% manual -> 100% auto in one leap

IBM Workplace OS

One microkernel O/S for all IBM products

— PDAs / desktop / servers / supercomputers

— “personalities” for OS/2, AIX, O5/400, Windows
— x86, new PowerPC, ARM

Started in 1991, scrapped 1996 ($2B)
factoring out common services too hard

PPC needed new OS, new OS needed PPC
— but PPC was late, buggy, and slow

IBM division per personality, bad cooperation
[Fleisch HotOS 1997]

hidden

ambitious / cool idea

binary compatibility with existing windows &c apps
— binary translation, APIs

each aspect well within reach by itself

common services too hard
— e.g. pull virt mem out of Windows &c into service
— too hard to get personalities to agree on services

OS needed PPC: otherwise too slow

PPC needed OS: otherwise incompatible

maybe virtual machines were the right answer
caused IBM to give up idea of building its own O/Ss

Many more

Portland, Oregan, Water Bureau, 30M, 2002

Washington D.C., Payroll system, 34M 2002

Southwick air traffic control system $1.6B 2002

Sobey’s grocery inventory, 50M, 2002

King’s County financial mgmt system, 38M, 2000)
Australian submarine control system, 100M, 1999

California lottery system, 52M

Hamburg police computer system, 70M, 1998

Kuala Lumpur total airport management system, $200M, 1998
UK Dept. of Employment tracking, $72M, 1994

Bank of America Masternet accounting system, $83M, 1988,
FBI virtual case, 2004.

FBI Sentinel case management software, 2006.

Recurring problems

Excessive generality and ambition
Second-system effect

Bad modularity

Inexperience (or ignoring experienced advice)
Bad-news diode

Mythical Man Month

Fighting back:
control novelty

Only one big new idea at a time
Re-use existing components
Why it's hard to say “no”

— Second-system effect

— Technology is better

— Idea worked in isolation
— Marketing pressure

Hire strong, knowledgeable management

Fighting back:
adopt sweeping simplifications

e Processor, Memory, Communication
e Dedicated servers

o Best-effort network

e End-to-end error control

o Atomic transactions

o Authentication, confidentiality

Fighting back:
design for iteration,
iterate the design

e Get something simple working soon
— Find out what the real problems are

e Structure project to allow feedback
— e.g. deploy in phases
o Series of small projects

“Every successful complex system is found to have evolved
from a successful simple system” — John Gall

Fighting back:
find bad ideas fast

e Question requirements

— “And ferry itself across the Atlantic” [LHX light
attack helicoper]

 Try ideas out, but don't hesitate to scrap
e Have a design loop

The design loop

/\min hours days eeks onths

Initial
design

»
>

Draft design coding testing deployed

e Find flaws fast!

Fighting back:
find flaws fast

e Plan and simulate
— Boeing 777 CAD, F-16 flight sim
e Design reviews, coding reviews, regression

tests, daily/hourly builds, performance
measurements

e Design the feedback system:
— Alpha and beta tests
— Incentives, not penalties, for reporting errors

Fighting back:
conceptual integrity

One mind controls the design
— Macintosh, Visicalc, UNIX, Linux

Good abstractions/modules reduce O(n?) effects
— In human organization as much as software
— Small focused teams

Good esthetics yields more successful systems
— Parsimonious, Orthogonal, Elegant, Readable, ...

Best designers much better than average
— Find and exploit them

Summary

e Principles that help avoid failure
— Limit novelty
— Adopt sweeping simplifications
— Get something simple working soon
— Iteratively add capability
— Incentives for reporting errors
— Descope early
— Give control to (and keep it in) a small design team

e Strong outside pressures to violate these principles
— Need strong knowledgeable managers

Admonition

Don’t design future failure case studies

Close the 6.033 design loop

https://sixweb.mit.edu/student/evaluate/6.033-s2009

Or https://sixweb.mit.edu

