Computer Systems are Different!

Robert Morris and Frans Kaashoek 6.033 Spring 2009

Outline hidden

- All systems are similar
 - But computer systems are different
- Unbounded composability
 - Easy to achieve complexity
- dtech / dt large for computer systems
- dcost / dt drives qualitative change

Composibility via static discipline

Figure 1–3: How gain and non-linearity of a digital component restore levels. The range of accepted inputs is much wider than the range of generated outputs.

• Be tolerant of inputs and strict on outputs

Digital H/W hidden

- Static discipline
 - Regenerate 0/1 at every gate
 - Noise does not accumulate (analog...)
 - Can chain together arbitrary #s of gates
- Other limits to size
 - Size, cost, reliability, power
- Rapid progress over many decades
 - Digital electronics a vast business
 - Lots of money for R&D -> rapid improvement
- Moore observed pattern for early ICs

Moore's law

"Cramming More Components Onto Integrated Circuits", *Electronics*, April 1965

Moore's Law hidden

- argument to abandon flexibility of discrete devices
 - cheapness would dominate other considerations
- x-axis is transistors)per die
- y-axis is cost per transistor
- down: marginal cost basically zero
- up: yield, defects
- min is optimum die size: about 10 in 1962!
 - more AND CHEAPER every year
- right graph: plot of minima for a few years
- predicted 2¹⁶ by 1975: single-chip microprocessor!
- how did that prediction work out?

Transistors/die doubles every ~18 months

2x transistors / 18 months hidden

- Moore was right!
- 1974: 8080 (first serious uproc), 4,500, 2 mhz
- my laptop chip has 400 million
- latest server chips have 2 billion
- improvement AND EXPECTATION has had huge effect
- what drives consistent exponential increase?

Lithography: the driver behind transistor count

- Components/area $O(x^2)$ with feature size
- Total components
 O(a) with die area
- Switching rate O(x) with feature size

Lithography hidden

- exponential increase due to progress in lithography
 - masks, photosensitive chem, etch
- y-axis: feature size
 - feature: wire or transistor
 - smaller wavelength (ultraviolet)
 - currently 45 nm
- y-axis: die area
 - limited by defects: constant defects / unit area
- we get to multiply area and feature area! for n^3
 - claim 18 months is combination of the two

CPU performance

Trends in CPU performance growth, from microprocessors to supercomputers

CPU performance hidden

- the low end ate the high end
- until 1990 expensive much faster than cheap
 - made very differently, lower integration
- now expensive use same chips as cheap
- there is only one economic technology now
- other tech improved similarly: DRAM and disk

DRAM density

Trends in semiconductor RAM density

DRAM density hidden

- IC improvements have also driven DRAM
- memory has gotten much cheaper and denser
 - kilo or a few megabytes in 1980, 1000x in 2009
- hasn't gotten a lot faster, maybe 3x
 - memory access time used to be about same as CPU cycle time
 - now CPU 300 times faster!
 - DRAM access is a serious bottleneck

Disk: Price per GByte drops at ~30-35% per year

Disk hidden

- price drop due to increase in density
 - bits per inch on magnetic surface
 - density doubled every year
 - smaller heads, better electronics, surfaces
- early 1980s: 400 MB (!) disks, huge, \$10,000
- 2009: 1 TB for about \$120, or 12 cents / GB
- what about performance?
 - density helps: transfer rate
 - but seek times decreased only 3x since 1980
 - because mechanical
 - disk seek time is a serious bottleneck!

ENIAC

- 1946
- Only one
- 5000 adds/sec
- 20 10-digit registers
- 18,000 vacuum tubes
- 124,500 watts
- Not really stored program

ENIAC hidden

- Illustrate trends w/ selected computers from history
- ENIAC: first GP electronic programmable computer
 - Electronic Numerical Integrator And Computer
- Army 1946, artillery firing tables (12 hr-> 30 min)
- no memory, just registers and constant tables
 - 20 10-digit registers
- programmable w/ switches/plugs
 - NOT stored program!
- 5000 ops/second
- 18,000 vacuum tubes: failure per day!!!
- only one, not commercial

UNIVAC (Universal Automatic Computer)

- 1951
- 46 sold
- 2000 ops/sec
- 1,000 12-digit words (mercury)
- 5000 tubes
- \$1.5 million

UNIVAC hidden

- first american commercial computer
 - 1951, 46 sold to big companies / government
- stored program! i.e. program in memory.
- designed by ENIAC designers, in a start-up
- fewer tubes than ENIAC (5000), and slower (2000 ops/sec)
- had memory: 1000 12-digit mercury delay lines
 - encode bits in acoustic waves, recycle
- expensive, huge, required a big staff

IBM System/360-40

- 1964
- 1.6 MHz
- 16-256 KB core
- \$225,000
- Family of six
- 32-bit
- Time-sharing

System/360 hidden

- first modern computer system: 1964
- familiar to us (unlike previous examples)
 - 8-bit bytes, 32-bit addresses, time-sharing OS
 - programming languages, compilers
 - some had virtual memory
- a range of compatible models
 - separated architecture from implementation
 - 8K to 512K mem, 1 mhz to 5 mhz
 - \$100,000 to \$5,000,000 (but mostly leased?)
 - upgrade path: customer can start cheap and grow
 - preserves s/w investment

Cray 1: supercomputer

- 1976
- 80 sold
- 80 MHz
- 8 Mbyte SRAM
- 230,000 gates
- \$5 million

Cray-1 hidden

- most famous and almost first super-computer: 1976
 - designed only for speed, not economy
 - you could get more speed for more money
 - simulate nuclear explosions, oil exploration, &c
- 80 mHz: very fast
 - a few mHz typical for the time
 - 130 kilowatts dissipated, due to 80 mHz
 - refrigerated w/ freon, integrated into frame
 - short wires, thus C shape, backplane in center
- 230,000 gates (only a few per chip)
- faster than any microprocessor until early 1990s!

DEC PDP-8 (1964)

- 60,000 sold
- 330,000 adds/sec

- 4096 12-bit words
- \$18,000

DEC PDP-8 hidden

- first successful minicomputer
 - 1965, cheap, small, flexible
 - lab of a few people could afford one
- very widely used
 - i have owned two, learned machine lang
- built from chips with a few gates on them (like cray)
- 12 bits: cheap, but guarantees limited family life
 - crummy timesharing and compilers
 - too few address bits a problem even now
- contrast to ibm 360's 32 bits
- great for a lab, but big/expensive/complex for personal computer

Apple II

- 1977
- 1 MHz
- 6502 microprocessor
- 4 to 48 Kilobytes RAM
- \$1300
- Basic, Visicalc

Apple II hidden

- one of first very successful personal computers
 - cheap/small enough that a family could buy one
 - single-chip microprocessor (6502)
- my high school had these
- games, educational, visicalc (first spread sheet)
- built-in basic interpreter
- pretty low end
 - but this was the winning line of development

IBM's wrist watch

- 2001
- Linux and X11
- 74 Mhz CPU
- 8 Megabyte flash
- 8 Megabyte DRAM
- Wireless

IBM Linux Wrist-Watch hidden

- from IBM Tokyo research lab
- about as powerful as Cray-1 (74 mhz, 8MB RAM)
- same size display as early IBM PCs (640x480)
- used to be a joke: impossible and pointless
- but now possible maybe pointless, but iPhone isn't

Software hidden

- No h/w limits to composition
 - Big CPU, DRAM, disk, networks
 - CHEAP
- Limiting factor is designers' understanding
- Tools have improved over the years
 - compilers, type checkers
 - high-level languages
 - language support for modularity
 - many ready-made libraries (modules)
 - version control / build / bug tracking systems
- Programmers are keeping up with hardware!

Software follows hardware

Cheap → Pervasive

Internet Domain Survey Host Count

Pervasive → qualitative change

Storm clouds on horizon hidden

- Complexity
- Robustness increasingly important
- Society and the law
- Scaling problems

Latency improves slowly

Heat is a problem

Heat is a problem hidden

- higher clock -> more switching -> heat
- modern CPUs are hot!
- 100w or 200w limit of air/fan cooling
- could go higher w/ liquid, but expensive

Recent Intel CPU Clock Rates

Clock rates hidden

- up and up for many years
 - smaller features, less capacitance
 - also pipelining
- why stopped in 2005?
 - power / heat
 - small wires and gates: resistance &c
- what now?
 - still more transistors every year
 - can use them to get more performance
 - bigger caches
 - better architecture e.g. better branch prediction
 - more cores

The Future: will it be painful?

AMD Barcelona Quad-core chip

Multicore hidden

- 4x 2 GHz cores rather than one 8 GHz CPU
 - cannot build the latter
 - but 4x is "same performance"
- BUT much harder to program
 - split work into four balanced pieces
 - avoid stepping on toes when using shared data
 - not mainstream, tools (languages) not so good
- So: good news and bad news

What went right?

- Unbounded composibility
- General-purpose computers
 - Only need to make one thing fast
- Separate arch from implementation
 - S/W can exploit new H/W
- Cumulative R&D investment over years